Nếu P và \(8p^2+1\) là các số nguyên tố thì 2p+1 là số nguyên tố
a)chứng minh rằng nếu p và p^2+8 là các số nguyên tố thì p^2+2 cũng là số nguyên tố
b)Nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
chứng minh rằng:
a, nếu p và p^2+8 là số nguyên tố thì p^2+2 cũng là số nguyên tố
b, nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
Chứng minh rằng
Nếu p và \(8p^2\)+1 Là các số nguyên tố thì 2p+1 cx là số nguyên tố
a) chứng minh rằng với mọi số nguyên n>1 thì n4 + 4n là hợp số.
b) nếu p và 8p2 +1 là các số nguyên tố thì (8p2+2p+1) cũng là các số nguyên tố.
CMR:
a: Nếu p và p2 + 8 là 2 số nguyên tố thi p2 + 2 là số nguyên tố
b: Nếu p va 8p2 + 1 là số nguyên tố thì 2p + 1 là số nguyên tố
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
chứng tỏ rằng ;
a, nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
b, nếu p là số nguyên tố lớn hơn 3 và 8p+1 cũng là số nguyên tố thì 4p+1 cũng là hợp số
A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
B , nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI
nếu p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này
vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số
chứng tỏ 4p+1 là hợp số (đpcm)
Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1
Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số (LOẠI)
VẬY ......................
b)Tương tự cách làm trên:
Nếu p=3k+1 thì 8p+1 =8(3k+1)+1=24k+8+1 =24k+9chia hết cho 3 nên là hợp số(loại)
Vậy.....................................
Chứng minh nếu \(p\) và \(8p^2+1\)là hai số nguyên tố lẻ thì \(8p^2+2p+1\)là số nguyên tố
Bài này dễ thôi bạn !!!
Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3
=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại
Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)
=> ĐPCM.
CMR : nếu cho p và 8p^2+1 là số nguyên tố thì 2p +1 là số nguyên tố
CÁC BẠN GIẢI CHI TIẾT GIÚP MIK VỚI THANKS BẠN NHÌU
Tìm P đi
Cho p =2,p=3
Nếu tìm đc đáp án p rồi thì cm lớn hơn sai = cách:
Nếu p là k thì lớn hơn sẽ có TH p=kn+1,=kn+2,vv
Tìm số nguyên tố p sao cho 8p2+1 và 2p+1 cũng là các số nguyên tố
xét p=2=>2p+1=5;8p2+1=33 loại
xét p=3:
=>2p+1=7;8p2+1=73 t/mãn
xét p>3:
=>p2 chia 3 dư 1
=>8p2 chia 3 dư 2
=>8p2+1 chia hết cho 3 loại
vậy p=3