1. Tìm N ( N thuộc Z )
(-1)^2n . (-1)^n . (-1)^n+1
Tìm n thuộc Z để x= 2n-1/n-1 thuộc Z; y= n-1/2n-1 thuộc Z
Help meeeeee!!!
Linh chưa làm được à, căng hè. Trong lớp có ai làm được chưa
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
tìm n thuộc Z
2n + 5 thuộc B( n + 1)
2n + 3 thuộc B( n + 1 )
Câu 1 :
\(2n+5\)thuộc bội của \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(2n+5\right)\)
Ta có :
\(2n+5=2n+2+3=2.\left(n+1\right)+3\)chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Do đó :
\(n+1=1\Rightarrow n=1-1=0\)
\(n+1=-1\Rightarrow n=-1-1=-2\)
\(n+1=3\Rightarrow n=3-1=2\)
\(n+1=-3\Rightarrow n=-3-1=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Bài 2 :
\(2n+3\)thuộc bội của \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(2n+3\right)\)
Ta có :
\(2n+3=2n+2+1=2.\left(n+1\right)+1\)chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(1\right)\)
\(Ư\left(1\right)=\left\{1;-1\right\}\)
Do đó :
\(n+1=1\Rightarrow n=1-1=0\)
\(n+1=-1\Rightarrow n=-1-1=-2\)
Vậy \(n\in\left\{0;-2\right\}\)
Chúc bạn học tốt
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
Tìm n thuộc Z để
M= 2n+1/n-1 thuộc Q
Ta có \(M=\dfrac{2n+1}{n-1}\) xác định khi n - 1 ≠ 0 hay n ≠ 1
Vì n ϵ Z nên 2n + 1 ϵ Z và n - 1 ϵ Z, suy ra M ϵ Q
Vậy n ϵ {Z | n ≠ 1}
a, tìm n thuộc Z để 2n-1 chia hết cho n+1
b, tìm số nguyên n sao cho 2n-1 là bội của n+3
tìm n thuộc Z
2n + 5 thuộc B( n + 1 )
2n + 3 thuộc B( n + 1 )
1. Tìm n thuộc z
a) n-1/ n-3
b) 2n+7/ n-1
c) 3n+4/ 2n-3
1
A, \(\frac{N-1}{N-3}\)=> N - 1 CHIA HẾT CHO N - 3
=> N + 3 - 4 CHIA HẾT CHO N - 3
=> N - 3 E Ư(4) = { -1 ; -2 ; -4 ; 1 ; 2 ; 4 }
TA CÓ BẢNG
N - 3 | -1 | -2 | -4 | 1 | 2 | 4 |
N | 2 | 1 | -1 | 4 | 5 | 7 |
VẬY N = { 2 ; 1 ; -1 ; 4 ; 5 ; 7 }
MÌNH CHỈ LÀM ĐƯỢC CÂU A THÔI NHÉ
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63