Cho n E N*
Chứng minh 2n +1 và 6n + 5 là 2 số nguyên tố cùng nhau
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
Chứng minh 2 số 2n+1 và 6n+5 nguyên tố cùng nhau (n thuộc N)?
dk kái đó gọi là chứng minh phản chứng
cho n là số tự nhên chứng minh 2n+1 và 6n+4 là 2 số nguyên tố cùng nhau
cho n thuộc số tự nhiên .Chứng minh :
a , 6n+7 và 2n+2 là 2 số nguyên tố cùng nhau
b. 6n+7 và 2n+1 là nguyên tố cùng nhau
CÁC BẠN GIẢI BÀI TẬP NÀY GIÚP MÌNH VỚI ...THANK YOU CÁC BẠN YÊU !!!
Chứng minh rằng hai số 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau với mọi n thuộc N .
Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
Giả sử UCLN của 2n + 1 và 6n + 5 là : H
Ta có : 2n + 1 chia hết cho H và 6n + 5 chia hết cho H
=> 3( 2n + 1 ) chia hết cho H và 6n + 5 => chia hết cho H
=> 6n + 3 chia hết cho H và 6n + 5 => chia hết cho H
Vậy nên ( 6n + 5 ) - ( 6n + 3 ) chia hết cho H => H chia hết cho 2
Ư ( 2 ) là 1 => H = 1
Vậy .............
Chứng minh rằng: 2n + 2 và 6n + 5 là hai số nguyên tố cùng nhau với mọi n thuộc N
tham khảo câu hỏi tương tự nha bạn
2n + 2 = 4n
6n + 5 = 11n
=> ƯCLN(4n, 11n) = 1
<=> ƯCLN(2n + 2, 6n + 5) = 1
Vì 2, 5 là số nguyên tố mà chỉ duy nhất 6 là hợp số nên 6 + 5 = 11 là số nguyên tố
=> ƯCLN(2n + 2, 6n + 5) = 1
=> ĐPCM
Chứng minh rằng 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:
cho d là ƯCLN của chúng và d>1
ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d
suy ra:6n+5-(6n+3) chia hết cho d
vậy 2 chia hết cho d
mà các ƯC của 2 là :2 và 1
mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1
nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu
vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
Chứng minh rằng số 6n + 5 và 2n + 1 nguyên tố cùng nhau ( n thuộc N)
(6n+5) và ( 2n+1)
Gọi d là ƯC ( 6n+5) và (2n+1)
=> (6n+5) chia hết d và ( 2n+1) chia hết d
=> ( 6n+5) chia hết d và 3( 2n+1) chia hết d
=> [ ( 6n+5) - ( 6n + 3 ) ] chia hết d
=> 2 chia hết d
=> d = 1 hoặc 2
Vậy 6n+5 và 2n+1 nguyên tố cùng nhau
Chứng minh rằng (2n+1) và (6n+5) nguyên tố cùng nhau và n thuộc N
Gọi d là ƯCLN(2n+1;6n+5)
=>2n+1 chia hết cho d và 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d và 6n+5 chia hết cho d
=>6n+3 chia hết cho d và 6n+5 chia hết cho d
=>(6n+5)-(6n+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2n+1;6n+5) thuộc 1 hoặc 2
Nhưng loại 2 vì 2 số 2n+1 và 6n+5 là số lẻ nên không có ƯCLN là số chẳn => ƯCLN(2n+1;6n+5)=1 nên 2 số này là 2 số nguyên tố cùng nhau.
Chứng minh rằng hai số 2n 1 và 6n 5 nguyên tố cùng nhau với mọi số tự nhiên n