chứng minh rằng mọi n€Z(n khác 0,-1) thì Q=1/1.2+1/2.3+....+1/n(n+1) khônh phài là số nguyên
chứng minh rằng mọi n€Z(n khác 0,-1) thì Q=1/1.2+1/2.3+....+1/n(n+1) khônh phài là số nguyên
ai nhanh mk sẽ like
Nhưng phải có cả cách giải
\(Q=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\) < 1 (1)
Vì n thuộc N* => n + 1 > 1 => \(1-\frac{1}{n+1}>1-1=0\) (2)
Từ (1) và (2) => 0 < Q < 1
=>Q ko phải số nguyên
chứng minh rằng mọi n€Z(n khác 0,-1) thì Q=1/1.2+1/2.3+....+1/n(n+1) không phài là số nguyên
Chứng minh
a, cho biểu thức A=5/n-1(n€Z)
Tìm điều kiện của n để A là ps . Tìm tất cả giá trị nguyên của n để A là số nguyên
b, chứng minh ps n/n+1 là ps tối giản (n€N và n khác 0)
c*, chứng tỏ rằng 1/1.2+1/2.3+1/3.4+...+1/49.50<1
a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)
\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow n-n+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : ....
c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)
\((đpcm)\)
cho em hỏi bài này
cho A = 5/n-1 ;( n thuộc z) tÌm n để A là phân số . tìm tất cả giá trii nguyên của n để A là số nguyên
chứng minh phân số n/n+1 tối giản ;(n thuộc N và khác 0)
chứng tỏ 1/1.2 + 1/2.3 + 1/3.4+ .........+1/49.50 < 1
giải giùm mình nhé
Ta có công thức \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)(bạn tự lên mạng coi cách chứng minh nha)
Áp dụng vào bài suy ra \(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng theo vế ta được \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)(đpcm)
để A=5/n-1 là phân số thì n#1
để A=5/n-1 là số nguyên thì 5 chia hết cho n-1
suy ra n-1 thuộc Ư(5)={1;-1;5;-5}
lập bảng ta có n={2;0;6;-4}
ta có ước của hai số nguyên liên tiếp bằng 1
suy ra Ư(n: n-1)=1 vậy n/n-1 là phân số tối giản
ta có 1/1x2+1/2x3+1/3x4+....+1/49/50
=1/1-1/2+1/2-1/3+1/4-1/5 +......+1/49-1/50
=1-1/50
=49/50<1
vậy 1/1x2+1/2x3+1/3x4+.....+1/49x50<1
\(\text{Chứng minh rằng : }\)\(\forall n\in Z\left(n\ne0,n\ne-1\right)\)\(\text{thì }\)\(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\)
\(\text{Không phải là số nguyên}\)
\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(Q=1-\frac{1}{n+1}=\frac{n}{n+1}\)
gọi d là UCLN của n,(n+1) ta có:
\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow d=1}\)
=> Q là p/s tối giãn mà n khác 0 => Q ko thuộc Z
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
a/ Cho biểu thức A = 5/n-1; (n thuộcZ)
b/ Chứng minh phân số n/n+1 tối giản;(n thuộc N và N khác 0)
c*/ Chứng tỏ rằng: 1/1.2+1/2.3+1/3.4+...+1/49.50 < 1
Câu a: Không hỏi nên không trả lời
Câu b:Gọi d là ƯCLN của n và n+1
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 là phân số tối giản
Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì: \(1-\frac{1}{50}\)<\(1\)
Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)
1/Tìm x :
a/ |x+8| = 10
b/ (x+ 1/8) : 2/3 = 3- 3/4
2/
a/ Cho biểu thức A= 5/n-1 ; ( n thuộc Z )
Tìm điều kiện của n để A là phân số ? Tìm tất cả giá trị số nguyên cuả n để A là số nguyên ?
b/ CHỨNG MINH :
Phân số n/n+1 tối giản
( n thuộc N; n khác 0 )
c/ CHỨNG MINH :
1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/48.49 + 1/49.50 < 1
a,Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có:
1²+2²+3²+...+n²=n.(n+1).(2n+1)/6
b,Chứng minh rằng
A=1.5+2.6+3.7+...+2023.2027
chia hết các số 11;23 và 2023
c,Tìm tất cả các số tự nhiên n (1 ≤ n ≤ 2000) để biểu thức B=1.3+2.3+...+n.(n+2) chia hết cho 2027