chứng minh rằng mọi n€Z(n khác 0,-1) thì Q=1/1.2+1/2.3+....+1/n(n+1) khônh phài là số nguyên
ai nhanh mk sẽ like
Nhưng phải có cả cách giải
chứng minh rằng mọi n€Z(n khác 0,-1) thì Q=1/1.2+1/2.3+....+1/n(n+1) không phài là số nguyên
\(\text{Chứng minh rằng : }\)\(\forall n\in Z\left(n\ne0,n\ne-1\right)\)\(\text{thì }\)\(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\)
\(\text{Không phải là số nguyên}\)
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên
Bài 1: Tìm số nguyên n sao cho:n+1 chia hết cho n2+5
Bài 2:Chứng minh rằng với mọi số tự nhiên n khác 0 thì:3n+3+2.3n+2n+5-3.2n chia hết cho 29
Bài 3: cho a,b,c thoả mãn: a+b+c=0. CMR:ab+bc+ca<=0
Chứng minh rằng Ư(n)thì 3n+1 và 4n+1 là số nguyên tố cùng nhau (n khác 0)
Chứng minh rằng: 1,71 < \(1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}\)<1,72. Với mọi n thuộc Z, n khác 0, n lớn hơn hoặc bằng 5
Chứng minh M/N là một số nguyên biết:
M=1/1.2 + 1/2.3 + 1/3.4 +.....+ 1/37.38
N=1/20.38 + 1/21.37 + 1/22.36 +.........+ 1/20.38
Bài 1:1, Cho a,b,c là các số hữu tỉ khác 0 sao cho
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
2,Chứng minh rằng : Với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)