Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Hà Minh
Xem chi tiết
Trần Thanh Phương
11 tháng 11 2018 lúc 17:14

a) \(x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}}\)

b) \(5x\left(3x-2\right)=4-9x^2\)

\(5x\left(3x-2\right)-\left(4-9x^2\right)=0\)

\(5x\left(3x-2\right)-\left(2-3x\right)\left(2+3x\right)=0\)

\(5x\left(3x-2\right)+\left(3x-2\right)\left(2+3x\right)=0\)

\(\left(3x-2\right)\left(5x+3x+2\right)=0\)

\(\left(3x-2\right)\left(8x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-2=0\\8x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-1}{4}\end{cases}}}\)

c) \(x^2+7x=8\)

\(x^2+7x-8=0\)

\(x^2+8x-x-8=0\)

\(x\left(x+8\right)-\left(x+8\right)=0\)

\(\left(x+8\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+8=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}}\)

d) \(2x^2+4y^2+10x+4xy=-25\)

\(x^2+x^2+4y^2+10x+4xy+25=0\)

\(\left(4y^2+4xy+x^2\right)+\left(x^2+10x+25\right)=0\)

\(\left(2y+x\right)^2+\left(x+5\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2y+x=0\\x+5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{5}{2}\\x=-5\end{cases}}}\)

Phạm Tuấn Long
Xem chi tiết
cao minh thành
26 tháng 8 2018 lúc 22:30

a. Ta có: x2+y2-2x+4y+5=0

⇌(x-1)2+(y-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

b. Ta có: 4x2+y2-4x-6y+10=0

⇌ (2x-1)2+(y-3)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)

c.Ta có: 5x2-4xy+y2-4x+4=0

⇌(2x-y)2+(x-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)

d.Ta có: 2x2-4xy+4y2-10x+25=0

⇌ (x-2y)2+(x-5)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)

Trần Thị Ngọc Hoài
Xem chi tiết
Dương Kim Hạnh
Xem chi tiết
Tớ Đông Đặc ATSM
26 tháng 7 2018 lúc 10:52

a,  x2+2xy+y2+2x+2y-15

<=> (x+y )2+2(x+y)+1-16

Đặt x+y =a

<=> a2+2a+1-42

<=> (a+1)2-42

<=> (a+5)(a-3) =>( x+y+5)(x+y-3)

b, x2-4xy+4y2-2x-4y-35

<=> (x-2y)2-2(x-2y)+1-36

Đặt (x-2y)  =b 

=> b2-2b+1-62

<=> (b-1)2-62

<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)

c, 

Bích Trịnh
26 tháng 7 2018 lúc 11:19

a,A= x^2+2xy+y^2+2x+2y-15

= (x+y)^2+(x+y)-15

Đặt x+y=a, ta có:

A=a^2+2a-15

  =a^2+2a+1-16

  =(a+1)^2-4^2

  =(a+1+4)(a+1-4)

  =(a+5)(a-3)

Thay a=x+y, ta có: A=(x+y+5)(x+y-3).

Bích Trịnh
26 tháng 7 2018 lúc 11:31

b,B= x^2 - 4xy+4y^2-2x-4y-35

   Hình như là sai đề đó bạn. Phải là x^2 - 4xy+4y^2-2x+4y-35 hoặc x^2 - 4xy+4y^2+2x-4y-35 hoặc x^2 + 4xy+4y^2-2x-4y-35 mới đúng đó bạn. Bạn xem lại đi nha.

c,C=6x^4 - 5x^3+8x^2-5x+6

C= x^2(6x^2-5x+8-5/x+6/x^2)

  =x^2(6(x^2+2+1/x^2)-5(x+1/x)-4)

  =x^2(6(x+1/x)^2-5(x+1/x)-4)

Đặt x+1/x=a, ta có:

C=x^2(6a^2-5a-4)

  =x^2(6a^2+3a-8a-4)

  =x^2(2a+1)(3a-4)

Thay a=x+1/x vào là được bạn nhé.

Vì Thị Thảo My
Xem chi tiết
Thảo Nguyên
6 tháng 4 2020 lúc 9:39

\(a.\left(8x^4-4x^3+x^2\right):2x^2=4x^2-2x+\frac{1}{2}\)

\(b.\left(2x^4-x^3+3x^2\right):\left(-\frac{1}{3x^2}\right)=-6x^6+3x^5-9x^4\)

\(c.\left(-18x^3y^5+12x^2y^2-6xy^3\right):6xy=-3x^2y^4+2xy-y^2\)

\(d.\left(\frac{3}{4x^3y^6}+\frac{6}{5x^4y^5}-\frac{9}{10x^5y}\right):-\frac{3}{5x^3y}=-\frac{5}{4y^5}-\frac{2}{xy^4}-\frac{3}{2x^2}\)

Khách vãng lai đã xóa
ahihi Nguyễn
Xem chi tiết
Cao Hoàng an
Xem chi tiết
Đỗ Ngọc Hải
26 tháng 7 2018 lúc 21:26

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

Trần Văn Thành
Xem chi tiết
super xity
Xem chi tiết
123456
15 tháng 11 2015 lúc 20:32

tick cho mình rồi mình làm cho

Phước Nguyễn
15 tháng 11 2015 lúc 21:11

a. \(\left(x^2+2x\right)^2+9x^2+18x+20=x^4+4x^3+13x^2+18x+20\)

\(=x^4+2x^3+2x^3+5x^2+4x^2+4x^2+8x+10x+20\)

\(=x^2\left(x^2+2x+5\right)+2x\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)

Lưu ý: có thể dùng phương pháp đồng nhất hệ số dưới dạng \(\left(x^2+ax+5\right)\left(x^2+bx+4\right)\) khi thực xong bước 1

b. \(x^3+2x-3=x^3+x^2-x^2+3x-x-3=x\left(x^2+x+3\right)-\left(x^2+x+3\right)=\left(x-1\right)\left(x^2+x+3\right)\)

c. \(x^2-4xy+4y^2-2x+4y-35=\left(x-2y\right)^2-2\left(x-2y\right)+1-36=\left(x-2y-1\right)^2-6^2\)

\(=\left(x-2y-1-6\right)\left(x-2y-1+6\right)=\left(x-2y-7\right)\left(x-2y+5\right)\)