Cho tam giác ABC đều, kẻ AD vuông góc BC (D thuộc BC). Biết \(AB=14.\sqrt{3}.\)Tính độ dài AD.
Cho tam giác ABC cân tại A có AB = AC = 5cm, kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: BH = HC và góc BAH = góc CAH
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ EH vuông góc với AC (E thuộc AC). Tam giác ADE là tam giác gì ? Vì sao ?
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Cho tam giác ABC vuông cân ở A. Biết AB=AC=4 cm
a, Tính độ dài cạnh BC
b, Từ A kẻ AD vuông góc Bc. C/m D là trung điểm của BC
c, Từ D kẻ DF vuông góc AC. C/m tam giác AFD là tam giác vuông cân
d, Tính độ dài đoạn AD
Bạn vui lòng tự vẽ hình giùm.
a) Tính độ dài BC.
Ta có \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pitago) (1)
Mà AB = AC (\(\Delta ABC\)cân tại A) => AB2 = AC2 (2)
Từ (1) và (2) => BC2 = 2AB2
=> BC2 = 2. 42 = 32
=> BC = \(\sqrt{32}\)(vì BC > 0)
b) CM: D là trung điểm của BC
\(\Delta ADB\)vuông và \(\Delta ADC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)
Cạnh AD chung
=> \(\Delta ADB\)vuông = \(\Delta ADC\)vuông (cạnh huyền - cạnh góc vuông) => DB = DC (hai cạnh tương ứng) => D là trung điểm của BC (đpcm)
* Hình bạn tự vẽ xD *
a) Ta có : Tam giác ABC vuông cân tại A
=> AB2 + AC2 = BC2 ( Đ.lí Pytago )
=> 42 + 42 = BC2
=> 16 + 16 = BC2
=> 32 = BC2
=> BC = \(\sqrt{32}cm\)
b) Vì tam giác ABC là tam giác vuông cân tại A => Góc B = góc C ( hai góc ở đáy )
Xét tam giác vuông ADB và tam giác vuông ADC có :
AB = AC ( gt )
B = C ( cmt )
=> Tam giác vuông ADB = tam giác vuông ADC ( cạnh huyền - góc nhọn )
=> DB = DC ( hai cạnh tương ứng )
=> D là trung điểm của BC
( Đến đây thì mình bí r xD )
Cho tam giác ABC vuông tại A. Biết AB=9cm, AC=12cm a) Tính độ dài cạnh BC b) kẻ toán phân giác của góc B cắt AC tại D( D thuộc AC). Vẽ DE vuông góc BC tại E( E thuộc BC). Chứng minh rằng tam.giác ABD= tam giác EBD c) Chứng minh rằng AD=DE d) Biết góc ABC=30 độ. Chứng minh tam giác ABE là tam giác đều e) Chứng minh rằng AD
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
c: Ta có: ΔBAD=ΔBED
nên DA=DE
Cho tam giác ABC vuông cân tại A, biết AB = AC = 4cm
a) Tính độ dài BC
b) Từ A kẻ AD vuông góc với BC. Chứng minh D là trung điểm của BC
c) Từ D kẻ DE vuông góc với AC. Chứng minh tam giác AED là tam giác vuông cân
d) Tình độ dài đoạn thẳng AD
cho tam giác vuông ABC vuông cân tại A,biết AB=AC=4cm
a)tính BC
b)từ A kẻ AD vuông góc BC.chứng minh D là trung điểm của BC
c)từ D kẻ DE vuông góc AC.chứng minh tam giác AED là tam giác vuông cân
d)tính độ dài AD
Giải
a) Áp dụng định lí Pytago ta có:
BC=√AB2+AC2
<=> BC= √42+42
<=>BC=4√2(cm)
b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC
<=>DB=DC
Hay D là trung điểm của BC
c) Áp dụng hệ thức lượng trog tam giác có:
AB.AC=BC,AD
<=>4.4=4√2.AD
<=>AD= 2√2(cm)
Ta có: DC=4√22=2√2(cm)
Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D
Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)
AE= 42=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)
Áp dụng hệ thức lượng ta có: DE=2√2.2√24=2(cm)
Do AE=DE mà góc AED bằng 90 độ
Nên tam giác AED vuông cân tại E
d) Câu trên tớ đã tính AD= 2√2(cm)
Mình giải hơi tắt 1 tí. Bạn thông cảm nhé. :)))
Giải
a) Áp dụng định lí Pytago ta có:
BC=AB2+AC2−−−−−−−−−−√
<=> BC= 42+42−−−−−−√
<=>BC=42–√
(cm)
b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC
<=>DB=DC
Hay D là trung điểm của BC
c) Áp dụng hệ thức lượng trog tam giác có:
AB.AC=BC,AD
<=>4.4=42–√
.AD
<=>AD= 22–√
(cm)
Ta có: DC=42√2
=22–√
(cm)
Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D
Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)
AE= 42
=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)
Áp dụng hệ thức lượng ta có: DE=22√.22√4
=2(cm)
Do AE=DE mà góc AED bằng 90 độ
Nên tam giác AED vuông cân tại E
Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D a)Tính độ dài các đoạn thẳng AC,AD và DC b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC c)Tính tỉ số diện tích của 2 tam giác DHC và ABC
Bài 1. Cho tam giác ABC cân tai A có góc A =70 độ. Tính số đo độ góc C
Bài 2. Cho tam giác ABC vuông tại A, có góc B =60 độ và AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a, Chứng minh tam giác ABD=tam giác EBD
b, Chứng minh tam giác ABE là tam giác đều
c, Tính độ dài cạnh BC
Bài 3. Cho tam giác ABC cân tại A có AB =5cm, BC = 6cm. Kẻ AD vuông góc với BC (D thuộc BC)
a, Tìm các tam giác bằng nhau trong hình
b. Tính ddoojj dài AD
Bài 4. Cho tam giác MNP vuông tại N biết MN=20cm, MP =25cm.
a,Tìm độ dài cạnh NP?
b, Cho tam giascc DEF có DE= 10cm, DF= 24cm, EF= 26cm.Chứng minh tam giác DEF vuông?
Làm ơn giúp mình đi mình đang cần gấp lắm
Cho tam giác ABC vuông tại A, kẻ p.giác BE (E thuộc AC) EH vuông góc vs BC (H thuộc BC)
a) CM: tam giác AEB= tam giác HEB, AE<EC
b) lấy điểm D thuộc BC sao cho Góc BAC=45 độ, gọi i là g.điểm của BE và AD. CM: điểm i cách đều 3 cạnh của tam giác ABC
c) Cho AB= 6cm, AC= 8cm. Tính độ dài BC và khoảng cách từ i đến 3 cạnh của tam giác ABC
Help me!!!
cho tam giác ABC vuông cân tại A, AB=AC=4cm. a, tính độ dài BC,b,từ A kẻ AD vuông góc với BC. chứng minh D là trung điểm của BC. c, từ A kẻ DE vuông góc với AC. chứng minh ADE là tam giác cân.d, tính độ dài của AD