phân tích đa thức thành nhân tử:
ab(a+b)+bc(b+c)+ac(c+a)+2abc
Phân tích đa thức thành nhân tử:
ab(a+b)+bc(b+c)+ac(a+c)-(a^3+b^3+c^3)-2abc
Phân tích đa thức thành nhân tử
ab*(a+b)-bc*(b+c)+ca*(c+a)+2abc
ab(a+b)+bc(b+c)+ca(a+c)+2abc
Phân tích đa thức thành nhân tử
ab(a+b) + bc(b+c) + ca(c+a) = a^2b + ab^2 + b^2c + bc^2 + ca(c+a) + 2abc
= ab^2 + b^2c + a^2b + bc^2 + 2abc + ca(c+a)
=b^2(a+c) + b(a^2 + c^2 + 2ac) + ca(c+a)
=b^2(a+c) + b(a+c)^2 + ca(c+a)
=(c+a)[b^2 + b(a+c) + ca]
=(c+a)[b^2 + ab + bc + ca]
=(c+a)[b(b+a) + c(b+a)]
=(c+a)(b+c)(b+a)
phân tích đa thức thành nhân tử
\(ab.\left(a+b\right)+bc.\left(b+c\right)+ac.\left(c+a\right)+2abc\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)+2abc\)
\(=ab\left(a+b\right)+b^2c+bc^2+a^2c+ac^2+2abc\)
\(=ab\left(a+b\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+2ab+b^2\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+c^2+ac+bc\right)\)
\(=\left(a+b\right)\left[\left(ab+ac\right)+\left(c^2+bc\right)\right]\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Phân tích đa thức sau thành nhân tử:
\(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)+2abc\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\)\(ab\left(a+b\right)+bc\left(a+b+c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(ab\left(a+b\right)+bc\left(a+b\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(\left(a+b\right)\left(ab+bc\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a+b\right)\left(c+a\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(ac+a^2+bc+ab\right)+b\left(c^2-ca\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(ca+a^2+bc+ab+c^2-ca\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a^2+ab+bc+c^2\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a^2+2ca+c^2+ab+bc\right)+ca\left(c+a\right)\)
\(=\)\(b\left[\left(c+a\right)^2+b\left(c+a\right)\right]+ca\left(c+a\right)\)
\(=\)\(b\left(c+a\right)\left(a+b+c\right)+ca\left(c+a\right)\)
\(=\)\(\left(c+a\right)\left(ab+b^2+bc+ca\right)\)
\(=\)\(\left(c+a\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)
\(=\)\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
...
cách này ngắn hơn nè:
\(ab.\left(a+b\right)+bc.\left(b+c\right)+ac.\left(a+c\right)+2abc\)
\(=a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+abc+abc\)
\(=\left(abc+ac^2\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)\)
\(=ac.\left(a+b\right)+bc.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)\)
\(=\left(a+b\right).\left(ac+bc+ab+c^2\right)\)
\(=\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(c+b\right).\left(a+c\right)\)
ai giúp mình với
Phân tích đa thức thành nhân tử
ab(a+b)+bc(b+c)+ca(c+a)+2abc
ab(a+b)+bc(b+c)+ca(c+a)+3abc
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a\right)\)
\(=\left(a+b+c\right)\left(ab+bc\right)+ca\left(c+a\right)\)
\(=b.\left(a+b+c\right)\left(a+c\right)+ca\left(c+a\right)\)
\(=\left(a+c\right)\left[b.\left(a+b+c\right)+ca\right]\)
\(=\left(a+c\right)\left(ab+b^2+bc+ca\right)\)
\(=\left(a+c\right)\left[a\left(b+c\right)+b\left(b+c\right)\right]\)
\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)+abc\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a+b\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ac\right)\)
Tham khảo nhé~
Phân tích đa thức thành nhân tử
a) ab(a+b)-bc(b+c)+ca(c+a)+abc
b)a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc
c)abc-(ab+bc+ac)+(a+b+c)-1
d)bc(b+c)+ac(c-a)-ab(a+b)
Giúp với ạ ! Cảm ơn
Phân tích đa thức thành nhân tử
a) ab(a+b)-bc(b+c)+ca(c+a)+abc
b)a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc
c)abc-(ab+bc+ac)+(a+b+c)-1
d)bc(b+c)+ac(c-a)-ab(a+b)
Giúp với ạ ! Cảm ơn
d) (b+c)(b+a)(c-a)
c) (b-1)(ac+1-a-c)
thông cảm 2 câu đầu chưa nghĩ ra
Phân tích đa thức thành nhân tử
a) ab(a+b)-bc(b+c)+ca(c+a)+abc
b)a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc
c)abc-(ab+bc+ac)+(a+b+c)-1
d)bc(b+c)+ac(c-a)-ab(a+b)
Giúp với ạ ! Cảm ơn
Phân tích đa thức thành nhân tử
a) ab(a+b)-bc(b+c)+ca(c+a)+abc
b)a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc
c)abc-(ab+bc+ac)+(a+b+c)-1
d)bc(b+c)+ac(c-a)-ab(a+b)
Giúp với ạ ! Cảm ơn
gợi ý thôi chứ giải ra dài lắm nhân phá ra