Cho tam giác nhọn ABC. Đường thẳng a thay đổi qua điểm A và không cắt cạnh BC. Gọi D, E lần lượt là hình chiếu vuông góc của B, C lên a. Xác định vị trí của a sao cho BD + CE lớn nhất.
Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng xy không cắt cạnh BC. Gọi D và E thứ tự là hình chiếu của B và C trên xy. Xác định vị trí của xy để BD + CE=BC.
Vì △ABC vuông cân tại A (gt) => AB = AC và ∠ABC = ∠ACB = 45o
Để xy không cắt BC <=> xy // BC <=> DE // BC => ∠ABC = ∠BAD = 45o , ∠ACB = ∠CAE = 45o
Lại có: +) DE // BC (cmt) mà BD ⊥ DE (gt)
=> BC ⊥ BD (từ vuông góc đến song song)
+) DE // BC (cmt) mà CE ⊥ DE (gt)
=> BC ⊥ CE (từ vuông góc đến song song)
Xét △BAD vuông tại D có: ∠BAD + ∠ABD = 90o (tổng 2 góc nhọn trong △ vuông)
=> 45o + ∠ABD = 90o
=> ∠ABD = 45o mà ∠BAD =45o
=> ∠ABD = ∠BAD
=> △ABD vuông cân tại D
=> BD = DA
Xét △CAE vuông tại E có: ∠CAE + ∠ACE = 90o (tổng 2 góc nhọn trong △ vuông)
=>45o + ∠ACE = 90o
=> ∠ACE = 45o mà ∠CAE = 45o
=> ∠CAE = ∠ACE
=> △CAE vuông cân tại E
=> EA = EC
Xét △BCD vuông tại B và △EDC vuông tại E
Có: ∠BDC = ∠DCE (BC // DE)
DC là cạnh chung
=> △BCD = △EDC (ch-gn)
=> BC = DE (2 cạnh tương ứng)
=> BC = DA + AE
=> BD + EC = BC (đpcm)
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
bạn đăng từng bài lên 1 đi
mik giải dần cho
Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a) Chứng minh AE là phân giác góc CAB
b) Chứng minh AD là trung trực của CD
c) So sánh CD và BC
d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.
cho tam giác ABC vuông tại A (AB<AC) đường cao AH, đường trung tuyến AM. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB, AC, trên tia đối EH lấy điểm P sao cho FP=EH, trên tia đối FH lấy Q sao cho FH=FQ
a) Chứng minh rằng P, A, Q thẳng hàng
b) Chứng minh tứ giác BPQC là hình thang vuông và PB+QC=BC
c)Chứng minh AM vuông góc EF
d) gọi d là đường thẳng thay đổi đi qua A, nhưng ko cắt cạnh BC của tam giác ABC. Gọi X,Y lần lượt là hình chiếu vuông góc của B,C trên d. Tìm vị trí của d để chu vi tứ giác BXYC lớn nhất
"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e
EP=EH chứ sao lại FP=EH, không giải được là đúng rồi
Cho tam giác ABC có 3 góc nhọn. D là điểm trên cạnh BC. Gọi E và F lần lượt là hình chiếu của B và C trên đường thẳng AD. Xác định vị trí của điểm D để tổng BE + CF có giá trị lớn nhất.
Mình nói trước là mình mới học dạng này nên không chắc đâu nhé! Nhất là cái dấu "=" ấy, nó rất khó để giải thích và có thể sai. Nếu bạn dùng geogebra thì sẽ dễ hiểu hơn.
Đặt BC = a = const (hằng số)
Xét trường hợp E và F không trùng D. Khi đó theo quan hệ giữa đường vuông góc và đường xiên thì:
BE + CF < BD + CD = BC (1)
Nếu E và F trùng D thì BE + CF = BC (2)
Từ (1) và (2) suy ra \(BE+CF\le BC=const\)
Đẳng thức xảy ra khi E và F trùng D khi đó D là trung điểm BC và tam giác ABC cân tại A.
tth làm không đúng rồi.
Ta có E là hình chiếu của B lên AD
F là hình chiếu của CAD
=> \(BC=BD+DC\ge BE+CF\)
Dấu "=" xảy ra khi và chỉ khi \(E\equiv D\equiv F\)
khi đó: \(BD\perp AD;CD\perp AD\)=> D là chân đường cao hạ từ A đến BC
Vậy D là chân đường cao hạ từ A đến BC thì BE+CF đạt giá trị lớn nhất bằng BC
Nguyễn Linh Chi tks cô ạ, em mới học dạng này thôi, nhất là cái chỗ dấu = em ko biết giải thế nào nữa..
Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm. Kẻ phân giác AD của tam giác ABC. Gọi d là đường thẳng có vị trí thay đổi nhưng luôn đi qua A đồng thời d không cắt đoạn BC( d cũng không //BC nhé). Gọi M và N tương ứng là hình chiếu của B và C trên đường thẳng d.
a) Chứng minh BM.CN=AM.AN ( chứng minh đồng dạng)
b) Tính độ dài BD
c) Hãy xác định vị trí của d để chu vi tứ giác BMNC lớn nhất.
trong tam giác ABC vuông tại A.D là điểm di động trên cạnh BC. Gọi E,F lần lượt là hình chiếu vuông góc của điểm D lên AB.AC
a/ Xác định vị trí của điểm D để tứ giác AEDF là hình vuông
b/ Xác định vị trí của điểm D sao cho 3AD+4EF đạt giá trị nhỏ nhất
Cho tam giác ABC có một đường thẳng thay đổi đi qua A không cắt cạnh BC. Gọi B' và C' theo thứ tự là hình chiếu vuông góc của B và C trên D. Hỏi đường thẳng D ở vị trí nào thì BB'+CC' là lớn nhất
Cho tam giác ABC vuông tại A, D là điểm di động trên cạnh BC. Gọi E, F lần lượt là hình chiếu vuông góc của điểm D lên AB, AC. Xác định vị trí của điểm D để tứ giác AEDF là hình vuông. Xác định vị trí của điểm D sao cho 3AD + 4EF đạt giá trị nhỏ nhất.
jup nha
a)tứ giác AEDF là hình chữ nhật (vì E=A=F=900 )
Để tứ giác AEDF là hình vuông thì AD là tia phân giác của góc BAC
b)do tứ giác AEDF là hình chữ nhật nên AD=EF
=>3AD+4EF nhỏ nhất => AD nhỏ nhất
D là hình chiếu góc vuông của A lên BC
Cho tam giác ABC vuông tại A; M là một điểm trên cạnh BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC. Xác định vị trí của điểm M sao cho tích MD.ME lớn nhất.
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân