Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nghĩa
Xem chi tiết
Khổng Anh
Xem chi tiết
Trịnh Quang Huy
13 tháng 3 lúc 23:24

Dễ vcl giải

Có a²(b+c)-b²(a+c)=2013-2013=0

a²b+a²c-b²a-b²c=0

a²b-b²a+a²c-b²c=0

ab(a-b)+c(a²-b²)=ab(a-b)+c(a-b)(a+b)=0

(a-b)[ab+c(a+b)]=0

Suy ra 1 trong 2 số =0 mà a và b khác nhau nên ab+c(a+b)=0 

Suy ra ab và c(a+b) là 2 số đối suy ra ab×c và c×c(a+b) là 2 số đối suy ra abc và c²(a+b) là 2 số đối

=>c²(a+b)-abc=0

<=>c²(a+b)=-abc

Lại có ab + c(a+b)=0 =>          ab + ac + cb =0 

<=> a(b+c)+cb=0

<=> a²(b+c) + abc =0

=>abc =0-2013=-2013=> abc = -2013

Nên c²(a+b)=-(abc)=-(-2013)=2013 .

Vậy c²(a+b)=2023 ezzzz 

Bài này dễ lớp 6 mà

Phạm Đức Duy
Xem chi tiết
Tiểu Nguyệt
Xem chi tiết
thảo nguyễn thị
Xem chi tiết
Nguyễn Minh Hải
Xem chi tiết
Nguyễn Tấn Phát
Xem chi tiết
Thanh Tùng DZ
20 tháng 11 2017 lúc 20:09

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

cộng 1 vào mỗi tỉ số,ta được :

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; b + c = -a ; a + c = -b

\(\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

xét a + b + c khác 0 \(\Rightarrow\)b + c = a + c = a + b \(\Rightarrow\)a = b = c

\(\Rightarrow P=2+2+2=6\)

Nguyễn Anh Quân
20 tháng 11 2017 lúc 20:08

Có : a/b+c = b/a+c = c/a+b => b+c/a = a+c/b = a+b/c

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

b+c/a = a+c/b = a+b/c = b+c+a+c+a+b/a+b+c = 2

=> P = 2+ 2 + 2  =6

k mk nha

Nguyễn Tiến Hồng
21 tháng 11 2017 lúc 20:26

câu này = 6

Xuân Mai Nguyễn
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
5 tháng 9 2019 lúc 10:01

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\)

\(\Rightarrow a^{23}+b^{23}=-b^{23}+b^{23}=0\)

Vậy \(\left(a^{23}+b^{23}\right)\left(a^{1995}+c^{1995}\right)=0\)

Thắng Nguyễn
Xem chi tiết
Akai Haruma
16 tháng 12 2021 lúc 23:29

Lời giải:
$a^2(b+c)=b^2(b+c)$

$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$

$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$

Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$

$\Rightarrow (a+b)(b+c)=0$

Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))

$\Rightarrow a+b=0$

$\Rightarrow H=c^2(a+b)=0$

Nguyễn Tuấn Khải
Xem chi tiết