Rút gọn:
\(\sqrt{17-6\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}+1}}}+1^2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Rút gọn \(A=\sqrt{8+2\cdot\sqrt{10+2\cdot\sqrt{5}}}+\sqrt{8-2\cdot\sqrt{10-2\cdot\sqrt{5}}}\)
RÚT GỌN :
\(\frac{\sqrt{6\cdot\sqrt{2}-1}-1}{\sqrt{6\cdot\sqrt{2}-1}}\)
CÁC BẠN CHO MÌNH XIN LỜI GIẢI SỚM NHẤT NHA !!!
tính
\(\left[\sqrt{12}-3\sqrt{75}\right]\cdot\sqrt{3}\)
\(\left[\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right]\cdot2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+4\sqrt{2}\right).2\sqrt{6}=12-18\sqrt{2}+16\sqrt{3}\)
\(\frac{1}{\sqrt{1\cdot2}}+\frac{1}{\sqrt{2\cdot3}}+\frac{1}{\sqrt{3\cdot4}}+...+\frac{1}{\sqrt{n\cdot\left(n+1\right)}}\)
rút gọn phân thức
\(\sqrt{\frac{5\cdot\left(38^2-17^2\right)}{8\cdot\left(47^2-19^2\right)}}\)cái này rút gọn nha
\(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)cái này giải phương trình haaaaaa
\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)
\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)
\(=\sqrt{\frac{5.21.55}{8.28.66}}\)
\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)
.bn tính lại \(\sqrt{14784}\)đi sao lạ vậy
\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4\cdot2-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4}\cdot\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\)
giúp mk mới mọi người ơi
câu 1 rút gọn
a .\(2.\sqrt{48}+\sqrt{27}+\sqrt{3}\)
b\(\sqrt{45.a^2}+\sqrt{8.b^2}+5\cdot\sqrt{5\cdot a\cdot a^2}-3\cdot b\cdot\sqrt{2\cdot b}\)
a. 2\(\sqrt{3.16}\)+\(\sqrt{3.9}\)+\(\sqrt{3}\)
=2.4.\(\sqrt{3}\)+3\(\sqrt{3}\)+\(\sqrt{3}\)
12\(\sqrt{3}\)
a,\(\frac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
b,\(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\cdot\left(\frac{5}{12}-\frac{1}{\sqrt{6}}\right)\)rút gọn
Rút gọn
\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\cdot\frac{x-\sqrt{x}}{2\sqrt{x}+1}\left(với\right)x\ge0,x\ne1\)
Tính
\(\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{21}{\sqrt{3}}\)
\(\sqrt{42-10\sqrt{17}}+\sqrt{\left(\sqrt{17}-\sqrt{16}\right)^2}\)
Bài làm
Rút gọn
\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\cdot\frac{x-\sqrt{x}}{2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}+1}{(\sqrt{x}-1)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Tính:
\(\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{21}{\sqrt{3}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{7\sqrt{3}\cdot\sqrt{3}}{\sqrt{3}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+7\sqrt{3}\)
\(=\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)
\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{3+2\sqrt{3}}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)
\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}+3+2\sqrt{3}}{3-4}+7\sqrt{3}\)
\(=\frac{7\sqrt{3}-6}{-1}+7\sqrt{3}\)
\(=6-7\sqrt{3}+7\sqrt{3}\)
\(=6\)
Bài làm
\(\sqrt{42-10\sqrt{17}}+\sqrt{\left(\sqrt{17}-\sqrt{16}\right)^2}\)
\(=\sqrt{42-10\sqrt{17}}+\left|\sqrt{17}-\sqrt{16}\right|\)
\(=\sqrt{25-10\sqrt{17}+17}+\sqrt{17}-\sqrt{16}\)
\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{17}-\sqrt{16}\)
\(=\left|5-\sqrt{17}\right|+\sqrt{17}-\sqrt{16}\)
\(=5-\sqrt{17}+\sqrt{17}-\sqrt{16}\)
\(=5-4\)
\(=1\)