Bài 1: CMR:
Bài 2: CMR:
Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 1
Bài 2: CMR 1/3 + 2/3^2 Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 3/4
Bài 3: Cho A= 1/1*2 + 1/3*4 + 1/5*6 + .... + 1/99*100. CMR 7/12 < A < 5/6
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
Bài 1 :CMR: số có dạng 9n+1 không chia hết cho 4 với mọi số nguyên n
Bài 2:CMR : tích 2 số chẵn chi hết cho 8
Bài 3: CMR: n3-3n2-n+3 chia hết cho 48 với n lẻ
Bài 4: CMR: n5-5n3+4n chia hết cho 120 với mọi n c Z
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
Bài 1 : CMR n^5 -n chia hết cho 30
Bài 2 CMR với m là số nguyên lẻ ta có A = m^3+3m^2 -m-3 chia hết cho 48
tick cho mình đi đã rồi mình bày cho nếu khôn thì đừng mơ nhé
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.
Bài 1 :CMR với mọi n thuộc N , thì 60n + 75 chia hết cho 15 nhưng không chia hết cho 30
Bài 2 : Cho A = 1+4+4^2+.....+4^2011
Bài 3 ; Cho ( a-b ) chia hết cho 7 , CMR ( 4a - 3b ) chia hết cho 7
Cho ( 4a + 3b ) chia hết cho 7 , CMR ab gạch đầu chia hết cho 3
BÀI 1
CMR: MỘT SỐ CHÍNH PHƯƠNG HOẶC LÀ CHIA HẾT CHO 3 HOẶC LÀ CHIA 3 DƯ 1
BÀI 2
CMR: MỘT SỐ CHÍNH PHƯƠNG KHI CHIA CHO 4 CÓ SỐ DƯ KO THỂ NÀO LÀ 2 HOẶC 3.
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.