Tìm giá trị nhỏ nhất của
A=/x-2018/+(x-y+1)^2+2009
với giá trị nào của x,y yhif biểu thức A=|x-y|+|x+1|+2018 đạt giá trị nhỏ nhất tìm giá trị nhỏ nhất đó
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)
a)tìm giá trị nhỏ nhất của biểu thức E = |x-30|+|y-4|+(z-2018)^2
b)tìm giá trị lớn nhất của biểu thức F = 19-|x-5|-(y-2018)^2
A=2017-(x+1). Tìm giá trị lớn nhất của A
B=giá trị tuyệt đối của x+2017cộng với 2018
Tìm giá trị nhỏ nhất của B
C=giá trị tuyệt đối của x+2017 cộng với giá trị tuyệt đối của y+2018 cộng với 2019
Tìm giá trị lớn nhất của C
1) Tìm giá trị nhỏ nhất của biểu thức : A=|x-2016|+2017 / |x-2016| + 2018.
2) Tìm số nguyên x,y sao cho : x-2xy+y=0
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
tìm giá trị nhỏ nhất của biểu thức
A= ( x-11)^2 +2015
B= -2018 + (x-1)^2+|x+y|
Ta có : \(\left(x-11\right)^2\ge0\forall x\in R\)
Nên : \(A=\left(x-11\right)^2+2015\ge2015\forall x\)
Do đó : \(A_{max}=2015\) khi x = 11
Ta có : \(\left(x-1\right)^2\ge0\forall x\)
\(\left|x+y\right|\ge0\forall x,y\)
Nên : \(B=-2018+\left(x-1\right)^2+\left|x+y\right|\ge-2018\forall x\)
Vậy \(B_{max}=-2018\) khi x = 1 và y = -1
Ta có :
\(\left(x-11\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x-11\right)^2+2015\ge2015\forall x\)
Dấu \("="\) \(\Leftrightarrow\left(x-11\right)^2=0\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Vậy \(GTNN\)của \(A\)là \(2015\Leftrightarrow x=11\)
~ Ủng hộ nhé .
P/s : Phần còn lại mik chưa nghĩ ra
Với giá trị nào của x,y thì biểu thức:
\(A=|x-y|+|x+1|+2018 \) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Ai nhanh mk tick nhé!
Ta có :
\(\left|x-y\right|\ge0;\left|x+1\right|\ge0\)
\(\Rightarrow A=\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall xy\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy ...
\(A=\left|x-y\right|+\left|x+1\right|+2018\)
Mà \(\left|x-y\right|;\left|x+1\right|\ge0\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\x=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy A = 2018 khi x;y = -1
Tìm giá trị của biến x và y để biểu thức A = ( x-2)2016 + (2y-1)2018 + 1 đạt giá trị nhỏ nhất
Ta có \(\left(x-2\right)^{2016}\ge0\)với mọi giá trị của x
\(\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x
=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x
=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\ge1\)với mọi giá trị của x
=> Amin = 1 khi và chỉ khi \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)
Ta lại có \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)
=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy khi x = 2 và \(y=\frac{1}{2}\)thì \(A=\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\)đạt GTNN là 1.
A = ( x-2)2016 + (2y-1)2018 + 1
Ta có : ( x-2)2016\(\ge\)0
(2y-1)2018\(\ge\)0
\(\Rightarrow\) ( x-2)2016 + (2y-1)2018 + 1\(\ge\)1
\(\Rightarrow\)A\(\ge\)1 \(\Rightarrow\)Min(A)=1
\(\Rightarrow\)\(\orbr{\begin{cases}\left(X-2\right)^{2016}=0\\\left(2Y-1\right)^{2018}=0\end{cases}}\)
Phần còn lại tự làm bạn nhé !
tìm giá trị nhỏ nhất của biểu thức sau :
(x+y)2-(1-x)(1+y)+2018
trả lời dùm mình , giúp mình
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
A= -3/2/x2+x+y2+1
B= 2018/-x2+3*x-2*y2+y-2