Cho số phức z thoả mãn điều kiện |z4 +4 | = | z(z+2i) |. Tính giá trị nhỏ nhất của |z+i|
Cho số phức z thoả mãn điều kiện |z+ z |+|z- z |=2| z 2 |. Tìm giá trị lớn nhất của biểu thức P=|z-3-2i|.
A. 19 + 37
B. 37 + 19
C. 2 + 5
D. 5 + 2
Cho số phức z thỏa mãn điều kiện z - 1 - 2 i = 4 Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z + 2 + i Tính giá trị của tổng S=M2+ m2
A. S = 82
B. . S = 34
C. S = 68
D. S = 36.
Cho số phức z thỏa mãn điều kiện |z -2 + 2i | + | z + 1 -3i | = 34 . Hãy tìm giá trị lớn nhất, giá trị nhỏ nhất của |z + 1 + i|.
A. 6 34 v à 8
B. 6 34 17 v à 4
C. 34 v à 8
D. Đáp án khác.
Chọn B.
Gọi M (x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Gọi điểm A(2; -2) ; B(-1; 3) và C(-1; -1)
Phương trình đường thẳng AB: 5x + 3y - 4 = 0.
Khi đó theo đề bài
Ta có . Do đó quỹ tích M là đoạn thẳng AB.
Tính CB = 4 và .
Hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Vậy
Cho số phức z thoả mãn |z – 1 + 3i| + |z + 2 – i| = 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của P = |2z + 1 = 2i|.
A. 8 và 4
Chọn D.
Ta có P = |2z + 1 = 2i| nên
Ta cần tìm giá trị lớn nhất, giá trị nhỏ nhất của:
Ta có z1 = 1 - 3i; z2 = -2 + i và z0 = -1/2 - i
Ta thấy:
Tính
Suy ra
Vậy Max P = 2.4 = 8 và
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Cho số phức z thỏa điều kiện z 2 + 4 = z z + 2 i . Giá trị nhỏ nhất của z + i bằng ?
A. 3
B. 4
C. 1
D. 2
Cho các số phức z thoả mãn z = 2 . Đặt w = ( 1 + 2 i ) z - 1 + 2 i . Tìm giá trị nhỏ nhất của w
A. 2
B. 3 5
C. 2 5
D. 5
Cho số phức z = a + bi ( a , b ∈ ℕ ) thỏa mãn đồng thời hai điều kiện | z | = | z - 1 - i | và biểu thức A = | z - 2 + 2 i | + | z - 3 + i | đạt giá trị nhỏ nhất. Giá trị của biểu thức a + b bằng
A. -1.
B. 2.
C. -2.
D. 1.
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn đồng thời hai điều kiện z = z ¯ - 1 - i và biểu thức A = z - 2 + 2 i + z - 3 + i đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. -1
B. 2
C. -2
D. 1