Tìm x biết :
\(\frac{37-x}{x+13}=\frac{3}{7}\)
Tìm x biết \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\frac{37-x}{x+13}=\frac{3}{7}\)
=> 3.(x+13)=7.(37-x)
=> 3x+39= 259-7x
=> 3x+7x=259-39
=> 10x= 220
=> x=22
\(\frac{a}{b}\) ai bày mk viết phân số với
Tìm x, biết:
\(\frac{37-x}{x+13}=\frac{3}{7}\)
=> (37 - x) . 7 = (x + 13) . 3
259 - 7x = 3x + 39
-7x - 3x = 39 - 259
-10x = -220
x =22
Tìm x biết :
\(\frac{37-x}{x+13}=\frac{3}{7}\)
=> (37-x).7=(x+13).3
=> 259-7x=3x+39
=> -7x-3x=39-259
=> -10x=-220
=> x=-220:(-10)
=> x=22
tìm x biết :
a , 0,4 : x = x : 0,9
b, \(b,13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
c, \(c,\frac{37-x}{x+13}=\frac{3}{7}\)
a) 0,4:x=x:0,9
0,4.0,9=x2
0,36 =x2
\(\sqrt{0,36}\)=x
0,6 =x
a) 0,4 : x = x : 0,9 x^2=0,9 . 0,4 x^2=(0,6)^2 =>x=+_6
Tìm x biết:
a) 7.(x-1)+2x.(1-x)=0
b) \(\frac{13+x}{37-x}=\frac{7}{3}\)
tìm x:
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Leftrightarrow3.\left(x+13\right)=7.\left(37-x\right)\)
\(\Leftrightarrow3.x+13.3=7.37-7.x\)
\(\Leftrightarrow3x+39=-7x+259\)
\(\Leftrightarrow3x+7x=259-39\)
\(\Leftrightarrow10x=220\)
\(\Leftrightarrow x=22\)
37−xx+13=3737−xx+13=37
⇔3.(x+13)=7.(37−x)⇔3.(x+13)=7.(37−x)
⇔3.x+13.3=7.37−7.x⇔3.x+13.3=7.37−7.x
⇔3x+39=−7x+259⇔3x+39=−7x+259
⇔3x+7x=259−39⇔3x+7x=259−39
⇔10x=220⇔10x=220
⇔x=22
bài 1 tính bằng cách hợp lí nếu có thể
\(\frac{-5}{12}\)-\(\frac{-3}{24}\)=
b) 5\(\frac{5}{13}\)-(1\(\frac{1}{2}+3\frac{5}{13}\))
c)\(\frac{-13}{37}.\frac{5}{23}+\frac{-13}{37}.\frac{18}{23}+\frac{50}{37}\)
d)(0,5 -\(\frac{3}{2}\)):1\(\frac{1}{6}+75\%\)
bài 2 tìm x biết
-7/5 +x = -3/4
-7/4 + 1/4 : x = 3/2
Tìm x
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Leftrightarrow\left(37-x\right).7=3.\left(x+13\right)\)
\(\Leftrightarrow259-7x=3x+39\)
\(\Leftrightarrow10x=220\)
\(\Leftrightarrow x=22\)
Vậy ...
Bài còn lại tương tự
tìm x:
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Leftrightarrow7\left(37-x\right)=3\left(x+13\right)\Leftrightarrow259-7x=3x+39\Leftrightarrow259-39=3x+7x\)
\(10x=220\Leftrightarrow x=22\)