cho A=11^9+11^8+11^7+…+11+1
chứng minh rằng A chia hết cho 5
Cho A=11^9+11^8+11^7+....+11+1.Chứng minh rằng A chia hết cho 5
=>11A=11^10 + 11^9 +... +11^2+11
=>10A=11^10-1
=>A=(11^10-1) :10
Ta thấy 11^10 tận cùng =1
=>1-1=0=>0 chia hết cho 5
Cho A = 11^9+11^8+11^7+.........+11+1 Chứng minh rằng A chia hết cho 5
\(A=1+11+...+11^9\)
\(11A=11+11^2+...+11^{10}\)
\(11A-A=\left(11+11^2+...+11^{10}\right)-\left(1+11+...+11^9\right)\)
\(10A=11^{10}-1\)
Ta có lũy thừa của 11 luôn có dạng ...1
=> 1110 - 1 có dạng ...0 chia hết cho 5 ( đpcm )
\(11A=11.\left(11^9+11^8+11^7+...+11+1\right)\)
\(11A-A=11^{10}+11^9+11^8+...+11^2+11\)
\(10A=\left(11^{10}+11^9+11^8+...+11^2+11\right)-\left(11^9+11^8+11^7+...+11+1\right)\)
\(10A=11^{10}-1\)
\(A=\frac{11^{10}-1}{10}\)
11^10 có CSTC là 1=>11^10-1 có CSTC là 0
\(=>\frac{11^{10}-1}{5}⋮5=>A⋮5\)
\(A=11^9+11^8+11^7+...+11+1\)\(\)
\(\Rightarrow11A=11^{10}+11^9+11^8+...+11^2+11\)
\(\Leftrightarrow11A-A=\left(11^{10}+11^9+11^8+...+11^2+11\right)-\left(11^9+11^8+11^7+...+11+1\right)\)
\(\Rightarrow10A=11^{10}-1\)
\(\Rightarrow A=\left(11^{10}-1\right):10\)
Ta thấy 11\(^{10}\)có tận cùng là 1
=> 11\(^{10}\)-1 có tận cùng là 0
\(\Leftrightarrow\)(11\(^{10}\)-1):10 có tận cùng là 0
\(\Rightarrow\left(11^{10}-1\right):10⋮5\)
\(\Leftrightarrow A⋮5\left(đpcm\right)\)
cho A = \(11^9+11^8+11^7+.....+11+1\) chứng minh rằng A chia hết cho 5
\(11A=11.\left(11^9+11^8+...+11+1\right)\)
\(10A=11^{10}+11^9+...+11-\left(11^9+11^8+...+11+1\right)\)
\(A=\frac{11^{10}-1}{10}\)
VÌ 1110 có CSTC là 1
=> 1110 -1 có CSTC là 0
=> 1110-1/10 chia hết cho 5
Cho a=119 +118+117+...+11+1. Chứng minh rằng A chia hết cho 5
\(A=11^9+11^8+11^7+....+11+1\)
\(\Rightarrow11A=11^{10}+11^9+.....+11\)
\(\Rightarrow11A-A=\left(11^{10}+11^9+....+11^2+11\right)-\left(11^9+11^8+...+11+1\right)\)
\(\Rightarrow10A=11^{10}-1\)
\(\Rightarrow2.5.A=11^{10}-1\)
Ta có tích trên có nhân 5 => A chia hết cho 5
Chứng minh rằng A=119+118+117+....+11+1 chia hết cho 5
Vi 11 mu may cung co chu so tan cung la 1 o day co 10so hang nen 1*10=10 la co tan cung la 0 va chia Hét cho 5
cho A= 119 + 118 + 117 +.....+11+1. chứng minh rằng a chia hết cho 5
A = 119 + 118 + 117 +.....+11+1.
=> A = (1 + 11 + 112 + 113 + 114) + ( 115 + 116 + 117 +118 + 119)
=> A = 16105 + 16105
Vì 16105 chia hết cho 5 => A chia hết cho 5
Ta xét: Số tận cùng là 1 nâng lên lũy thừa luôn tận cùng là 1
Số các số hạng của dãy là:
(9 - 0) + 1 = 10 số
Chữ số tận cùng là: 10 x 1 = 10
Tận cùng là 0 chia hết cho 5
KL : Tổng chia hết cho 5
Chứng minh rằng A chia hết cho 5
A=119+118+117+...+11+1
Ta thấy tổng A gồm 10 số hạng, mỗi số hạng có tận cùng là 1 vì 11 mũ bao nhiêu lên vẫn có tận cùng là 1
=> A có tận cùng là 1 x 10 hay A có tận cùng là 0
=> A chia hết cho 5 (đpcm)
Cho A = 11^9+11^8+11^7+....+11+1.
a, Chứng minh rằng A chia hết cho 5
b, Chứng mình rằng với mọi số tự nhiên n thì n^2+n+1 ko chia hết cho 4
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
hok tốt
Cho A= 119+118+117+...+11+110. Chứng minh rằng A chia hết cho 5
A có (9-0) + 1 = 10 số hạng.
Mỗi số hạng 11n đều có tận cùng là 1. Nên A có tận cùng là 10*1 là 0 => A chia hết cho 5. đpcm