tìm số có 3 chữ số mà số đó bằng lập phương của tổng 3 chữ số của số đó
Tìm số có hai chữ số mà bình phương của số đó bằng lập phương tổng các chữ số của nó
(ab)^2=(a+b)^3
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số
(ab) = 27 hoặc 64
chỉ có 27 thỏa mãn
vậy (ab)=27
Gọi số có 2 chữ số là ab (gạch đầu). ĐK : 9≥a≥1 , 9≥b≥0 , a,b thuộc N.
Theo đề ta có :
(a+b)³=(10a+b)²
<=>a+b=[1+9a/(a+b)]²
=>a+b là số chính phương và 9a chia hết cho (a+b)
=>a+b thuộc {1;4;9;16} và 9a chia hết cho (a+b)
☻a+b=1 => 10a+b=1 (loại)
☻a+b=4 => 10a+b=8 (loại)
☻a+b=9 => 10a+b=27 =>a=2 và b=7 (nhận)
☻a+b=16=>10a+b=64 =>a=6 và b=4 (loại)
Vậy số cần tìm là 27
tìm số lớn nhất có 3 chữ số khác nhau mà số đó bằng tổng các số có 2 chữ số khác nhau được lập từ 3 chữ số của số đó.
Cho số có hai chữ số biết rằng bình phương của số ấy bằng lập phương tổng các chữ số của nó. Chứng minh rằng số đó có số mũ là 3 mà không cần tính số đó
Gọi số cần tìm là ab.
Ta có (ab)2 = a3 + b3
Giả sử ab = 33 = 9
thì (ab)2 = 81 => a3 + b3 = 81. Bạn tìm chữ số a và b => điều phải chứng minh
Tìm số lớn nhất có 3 chữ số biết rằng số đó bằng tổng của chữ số hàng trăm , bình phương của chữ số hàng chục và lập phương của chữ số hàng đơn vị
Tìm một số có 3 chữ số biết số đó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương của một số tự nhiên
Tìm số có hai chữ số sao cho tích của số đó với tổng các chữ số của nó bằng tổng lập phương các chữ số của số đó
Tìm số tự nhiên có nhiều hơn 3 chữ số, biết rằng nếu ta bỏ đi 3 chữ số cuối cùng của số đó thì ta được một số mới mà lập phương của nó bằng chính số cần tìm.
Tìm số có hai chữ số sao cho tích của số đó với tổng các chữ số của nó bằng tổng lập phương các chữ số của số đó
Gọi số cần tìm là : \(\overline{ab}\left(a\ne0\right)\)
Theo đề ra ta có:
\(\overline{ab}\left(a+b\right)=a^3+b^3\)
\(\Leftrightarrow10a+b=a^2-ab+b^2=\left(a+b\right)^2-3ab\)
\(\Leftrightarrow9a+3ab=\left(a+b\right)^2-\left(a+b\right)\)
\(\Leftrightarrow3a\left(a+b\right)=\left(a+b\right)\left(a+b-1\right)\)
Vì (a+b)và (a+b−1) là hai số nguyên tố cùng nhau cho nên:
TH1: \(\hept{\begin{cases}a+b=3a\\a+b-1=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=8\end{cases}}\)
TH2 : \(\hept{\begin{cases}a+b-1=3a\\a+b=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=7\end{cases}}\)
Vậy số cần tìm là 48 hoặc 37
1.Một số có 3 chữ số trong đó tổng các chữ số của chúng bằng 7.Chứng minh rằng số đó chia hết cho 7 khi chữ số hàng chục và chữ số hàng đơn vị giống nhau.Điều ngược lại có đúng không ? Hãy chứng minh.
2.Tìm hai số có 2 chữ số biết lập phương của số này bằng bình phương của số kia.