Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đồ Ngốc
Xem chi tiết
Phạm Minh Tuấn
Xem chi tiết
Giải hộ mình với
Xem chi tiết
Nguyễn Tất Đạt
15 tháng 5 2017 lúc 20:27

A B C D E F H I K 1 2 3 1 2 3 1 2

Trên nửa mặt phẳng bờ AB không chứa điểm C, lấy điểm I sao cho AB là đường trung trực của EI. Nối I với A và B.

Trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm H sao cho AC là đường trung trực của EH. Nối H với A và C.

Trên nửa mặt phẳng bờ BC không chứa điểm A, lấy điểm K sao cho BC là trung trực của FK. Nối K với B và C.

Nối E với K, nối F với I và H.

AB là trung trực của EI => BI=BE (Tính chất đường trung trực của đoạn thẳng)

BC là trung trực của FK => BF=BK.

Ta có: ^B3=^B1 (Theo đề bài) => ^B3+^B2=^B1+^B2 (Cộng mỗi vế với ^B2) => 2.^B3+^B2=2.^B1+^B(1)

Xét \(\Delta\)AIB và \(\Delta\)AEB có:

AI=AE (T/c đường trung trực)

Cạnh AB chung                         => \(\Delta\)AIB=\(\Delta\)AEB (c.c.c)

BI=BE (cmt)

=> ^ABI=^B3 (2 góc tương ứng) => ^ABI+^B3=2.^B3 => 2.^B3=^IBE (2)

Xét \(\Delta\)BFC và \(\Delta\)BKC có:

CF=CK (T/c đường trung trực)

Cạnh BC chung                        => \(\Delta\)BFC=\(\Delta\)BKC (c.c.c) 

BF=BK (cmt)

=> ^B1=^CBK (2 góc tương ứng) => 2^B1=^KBF (3)

Thay (2) và (3) vào (1), ta có: ^IBE+^B2=^KBF+^B2 => ^FBI=^KBE.

Xét \(\Delta\)BIF và \(\Delta\)BEK có:

BI=BE (cmt)

^FBI=^KBE (cmt)    => \(\Delta\)BIF=\(\Delta\)BEK (c.g.c)

BF=BK (cmt) 

=> IF=EK (2 cạnh tương ứng) (4)

\(\Delta\)AIB=\(\Delta\)AEB (cmt) => ^BAI=^A1 (2 góc tương ứng) => ^FAI=2.^A1 (5)

AC là trung trực của EH => AE=AH. Mà AE=AI (cmt) => AH=AI.

Xét \(\Delta\)AHC và \(\Delta\)AEC có:

AH=AE (cmt)

Cạnh AC chung              => \(\Delta\)AHC=\(\Delta\)AEC  (c.c.c)

CH=CE (T/c trung trực)

=> ^CAH=^A2 => ^FAH=2.^A2 (6)

Mà ^A1=^A2 (Đề cho) => 2.^A1=2.^A2 (7) . Từ (5), (6) và (7) => ^FAI=^FAH

Xét \(\Delta\)FAH và \(\Delta\)FAI có:

Cạnh AF chung

^FAH=^FAI (cmt)  => \(\Delta\)FAH=\(\Delta\)FAI (c.g.c) => IF=HF (2 cạnh tương ứng) (8)

AH=AI (cmt)

Từ (4) và (8) => IF=EK=HF.  BC là trung trực của FK => CK=CF.

AC là trung trực của EH => CE=CH.

Xét \(\Delta\)KEC và \(\Delta\)FHC có:

EK=HF (cmt)

CK=CF (cmt)   => \(\Delta\)KEC=\(\Delta\)FHC (c.c.c)

CE=CH (cmt)

=> ^KCE=^FCH (2 góc tương ứng) => ^KCF+^C2=^HCE+^C2 => ^KCF=^HCE (9)

\(\Delta\)BFC=\(\Delta\)BKC (cmt) => ^C1=^BCK (2 góc tương ứng) => ^KCF=2.^C1 (10)

\(\Delta\)AHC=\(\Delta\)AEC (cmt) => ^C3=^ACH (2 góc tương ứng) => ^HCE=2.^C3 (11)

Thay (10) và (11) vào (9), ta có: 2.^C1=2.^C3 => ^C1=^Chay ^ACE=^BCF (đpcm).

Phạm Minh Tuấn
Xem chi tiết
Monster
Xem chi tiết
Tran Le Khanh Linh
9 tháng 4 2020 lúc 20:24

*Bài này có nhiều cách làm, mỗi cách có 1 mình khác nhau. OLM đang lỗi nên không vẽ được hình. Bạn thông cảm*

Giả sử E nằm giữa A và FCách 1: Kéo dài BE cắt đường tròn ngoại tiếp \(\Delta\)AEC tại I

Ta có: \(\widehat{EIC}=\widehat{EAC}\) nên \(\Delta\)ABF~\(\Delta\)IBC

\(\Rightarrow\frac{BF}{BA}=\frac{BC}{BI}\) hay \(\frac{BF}{BC}=\frac{BA}{BI}\)

Lại có \(\widehat{ABE}=\widehat{CBF}\) nên \(\Delta\)ABI~\(\Delta\)FBC

Vậy \(\widehat{ACE}=\widehat{EIA}=\widehat{ACE}\)

Cách 2: Gọi I, H lần lượt là điểm đối xứng của E qua AB và AC. K là điểm đối xứng F qua BC

Ta có \(\Delta AIH\) cân, AD là đường phân giác nên AD là đường trung trực đoạn IH

=> FI=FH (1)

\(\Delta FBI=\Delta KBE\left(cgc\right)\) nên FI=KE(2)

Từ (1) (2) => KE=FH

\(\Delta CEK=\Delta CHF\left(ccc\right)\)

=> \(\widehat{HCF}=\widehat{ECK}\) hay \(\widehat{ACE}=\widehat{BCF}\)

Cách 3: Đặt \(\widehat{ABE}=\widehat{CBF}=\alpha;\widehat{ACE}=\beta;\widehat{BCF}=\gamma\)

Ta có: \(\frac{S_{ACE}}{S_{DCF}}=\frac{\frac{1}{2}\cdot AC\cdot CE\cdot\sin\beta}{\frac{1}{2}\cdot DC\cdot CF\cdot\sin\gamma}\left(3\right)\)

Mà \(\frac{S_{ACE}}{S_{DCF}}=\frac{S_{ABE}}{S_{DBF}}=\frac{\frac{1}{2}AB\cdot BE\cdot\sin\alpha}{\frac{1}{2}BD\cdot BF\cdot\sin\alpha}\left(4\right)\)

Từ (3) (4) => \(\frac{AC}{CD}\cdot\frac{CE}{CF}=\frac{\sin\beta}{\sin\gamma}=\frac{AB}{BD}\cdot\frac{BE}{BF}\)

Mặt khác \(\frac{AC}{CD}=\frac{AB}{BD};\frac{CE}{CF}=\frac{BE}{BF}\left(E;F\in AD\right)\)

Vậy \(\frac{\sin\beta}{\sin\gamma}=1\Rightarrow\widehat{ACE}=\widehat{BCF}\left(\beta+\gamma=180^o\right)\)

Trường hợp F nằm giữa A và E, có \(\widehat{ABF}=\widehat{CBE}\), cũng làm tương tự
Khách vãng lai đã xóa
nguyễn văn huy
Xem chi tiết
Đào Thanh Trúc
Xem chi tiết
:ONLINE 5S
29 tháng 11 2016 lúc 14:56

THANH TRÚC GIÚP MIK GIẢI ĐỐ

Luna Akane
25 tháng 4 2017 lúc 20:38

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

AS MOBILE
6 tháng 4 2020 lúc 13:58

kết bn trả lời

Khách vãng lai đã xóa
Hạnh Hồng
Xem chi tiết
Vũ Ngọc Đan Linh
Xem chi tiết
Darlingg🥝
9 tháng 9 2019 lúc 14:40

a) Gọi F là giao diện của HI IH ta có :

I là giao điểu đối xứng của E qua AB,AC 

Ta thấy I,H đối xứng với E qua AB,AC 

=> Ta lại thấy các điểm EF thuộc đg phân giác AD ( Có cần vẽ ko bn?)

Mà đây là xác định 1 tam giác trực tuyến theo đường phân giác nên CMR để FH = FI ta có:

Để DM và góc ABE = DBF

Mà nếu FI để cùng thì sẽ FH tuy nhiên 2 cái ko bằng nhau (vô lý) 

Để FI = FH là :

\(DEF=DBF=FH=IH\)

Vì vẽ qua đg đó nối liền vs nhau 

b) K vẽ đối xứng BC nên mình k vẽ đc :)

K đi qua F -> từ F qua BC nên 

Cmr: 

FI=FK

cho thấy FI qua 1 đg đối xứng nhất địng 

c) Bí...