Nếu \(n\in Z\) và n không chia hết cho 3 thì:
\(A=3^{2n}+3^n+1⋮13\)
Nếu \(n\in Z\) và n không chia hết cho 3 thì:
\(A=3^{2n}+3^n+1⋮13\)
CMR nếu n là số nguyên dương không chia hết cho 3 thì A=32n+3n+1 chia hết cho 13
chứng minh rằng nếu n là số nguyên không chia hết cho 3 thì:
A= \(3^{2n}+3^n+1\)
chia hết cho 13
CMR nếu n chia hết cho 3 thì A = 3 2n + 3n +1 chia hết cho 13
CMR: Nếu n chia hết cho 3 thì A(n)=32n+3n+1 chia hết cho 13 Với mọi n thuộc N. Nhanh nhé đang gấp
Chứng minh rằng với n không chia hết cho 3 thì 3^(2n)+3^n+1 chia hết cho 13
Đây
Ta có: \(3^{2n}+3^n+1\)
Vì n không chia hết cho 3 nên: n có dạng là \(3k+1\)
Thế vào: Ta có: \(3^{6k+2}+3^{3k+1}+1\)
\(=729^k\cdot9+27^k\cdot3+1\)
Mặt khác: \(729\equiv27\equiv1\)(mod 13)
Do đó: \(729^k\cdot9+27^k\cdot3+1\equiv1\cdot9+1\cdot3+1=13\)(mod 13)
Vậy .............
P/s: Xét luôn trường hợp \(n=3k+2\)với cách làm tương tự trên
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015