Tìm tất cả các giá trị x,y,z sao cho:
\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
Tìm tất cả các giá trị của x,y,z sao cho \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
Tìm tất cả ác giá trị của x,y,z sao cho: \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
đk: \(x\ge0;y-z\ge0;z-x\ge0\Leftrightarrow y\ge z\ge x\ge0\)
Ta có: \(pt\Leftrightarrow2\sqrt{x}+2\sqrt{y-z}+2\sqrt{z-x}=x+y-z+z-x+3\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-z}-1\right)^2+\left(\sqrt{z-x}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-z}=1\\\sqrt{z-x}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=2\end{cases}\left(tm\text{đ}k\right)}}\)
Tìm tất cả giá trị của x,y,z sao cho
\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
1.Tìm x,y thuộc \(ℕ\)thỏa: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{x}\)
2.Tìm các số hữu tỉ x,y thỏa: \(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
3. Tìm tất cả các giá trị x,y,z sao cho:
\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
Làm được câu nào cx tick nha ( mik cs 3 nick)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Cho các số dương x,y,z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{cases}}\)
Tính giá trị của biểu thức P=\(\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Tìm các giá trị của x, y, z thỏa mãn :
\(\frac{1}{2}\left(x+y+z\right)+2=2\sqrt{x}+\sqrt{y+1}+\sqrt{z-3}\)
P=\(\frac{x}{\left(\sqrt{x-\sqrt{y}}\right).\left(\sqrt{x-\sqrt{z}}\right)}+\frac{y}{\left(\sqrt{y-\sqrt{z}}\right).\left(\sqrt{y-\sqrt{x}}\right)}+\frac{z}{\left(\sqrt{z-\sqrt{y}}\right).\left(\sqrt{z-\sqrt{y}}\right)}\)
Cho x,y,z>0 và khác nhau đôi một.Chứng minh rằng giá trị của biểu thức Pkhông phụ thuộcvào giá trị của biến.
cho x,y,z>0 và \(x+y+z=\sqrt{2019}\). Tìm giá trị nhỏ nhất của biểu thức: \(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
\(A=\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(x+z\right)\sqrt{\left(x+y\right)\left(y+z\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}}{z}.\)
Áp dụng bất đẳng thức Bunhiacopski ta có
\(\left(x+y\right)\left(x+z\right)\ge\left(x+\sqrt{yz}\right)^2\)
Tương tự \(\left(x+y\right)\left(y+z\right)\ge\left(y+\sqrt{xz}\right)^2\)
\(\left(y+z\right)\left(x+z\right)\ge\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow A\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}+\frac{\left(x+z\right)\left(y+\sqrt{xz}\right)}{y}+\frac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\)
hay \(A\ge2\left(x+y+z\right)+\frac{\sqrt{yz}\left(y+z\right)}{x}+\frac{\left(x+z\right)\sqrt{xz}}{y}+\frac{\left(x+y\right)\sqrt{xy}}{z}\)
\(\Leftrightarrow A\ge2\left(x+y+z\right)+\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)
Đặt \(M=\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)
Ta có \(\left(x,y,z\right)\rightarrow\left(a^2,b^2,c^2\right)\)
Khi đó \(M=\frac{a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)}{a^2b^2c^2}\)
ÁP DỤNG BĐT AM-GM ta có
\(a^5b^3+a^3b^5\ge2\sqrt{a^8b^8}=2a^4b^4\)
\(b^5c^3+b^3c^5\ge2\sqrt{b^8c^8}=2b^4c^4\)
\(a^5c^3+a^3c^5\ge2\sqrt{a^8c^8}=2a^4c^4\)
Cộng từng vế ta được
\(a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)\ge2\left(a^4b^4+b^4c^4+c^4a^4\right)\)
\(\ge2a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow M\ge2\left(a^2+b^2+c^2\right)=2\left(x+y+z\right)\)
\(\Rightarrow A\ge4\left(x+y+z\right)=4\sqrt{2019}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{2019}}{3}\)