Tìm tất cả các giá trị của x,y,z sao cho \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
Tìm tất cả ác giá trị của x,y,z sao cho: \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
Tìm tất cả giá trị của x,y,z sao cho
\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
1.Tìm x,y thuộc \(ℕ\)thỏa: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{x}\)
2.Tìm các số hữu tỉ x,y thỏa: \(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
3. Tìm tất cả các giá trị x,y,z sao cho:
\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
Làm được câu nào cx tick nha ( mik cs 3 nick)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho các số dương x,y,z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{cases}}\)
Tính giá trị của biểu thức P=\(\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Tìm các giá trị của x, y, z thỏa mãn :
\(\frac{1}{2}\left(x+y+z\right)+2=2\sqrt{x}+\sqrt{y+1}+\sqrt{z-3}\)
P=\(\frac{x}{\left(\sqrt{x-\sqrt{y}}\right).\left(\sqrt{x-\sqrt{z}}\right)}+\frac{y}{\left(\sqrt{y-\sqrt{z}}\right).\left(\sqrt{y-\sqrt{x}}\right)}+\frac{z}{\left(\sqrt{z-\sqrt{y}}\right).\left(\sqrt{z-\sqrt{y}}\right)}\)
Cho x,y,z>0 và khác nhau đôi một.Chứng minh rằng giá trị của biểu thức Pkhông phụ thuộcvào giá trị của biến.
cho x,y,z>0 và \(x+y+z=\sqrt{2019}\). Tìm giá trị nhỏ nhất của biểu thức: \(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)