Chứng tỏ rằng \(\dfrac{z-1}{z+1}\) là số thực khi và chỉ khi \(z\) là một số thực khác -1 ?
Chứng tỏ rằng z - 1 z + 1 là số thực khi và chỉ khi z là một số thực khác – 1.
Hiển nhiên nếu z ∈ R, z ≠ −1 thì
Ngược lại, nếu
thì z – 1 = az + a và a ≠ 1
Suy ra (1 − a)z = a + 1
và hiển nhiên z ≠ −1.
Chứng tỏ rằng là số thực khi và chỉ khi z là một số thực khác – 1.
Hiển nhiên nếu z ∈ R, z ≠ −1 thì
Ngược lại, nếu
thì z – 1 = az + a và a ≠ 1
Suy ra (1 − a)z = a + 1
và hiển nhiên z ≠ −1.
a) Cho số phức z. Chứng minh rằng z là một số thực khi và chỉ khi \(z=\overline{z}\)
b) Chứng tỏ rằng số phúc sau là một số thực :
\(z=-\dfrac{3+2i\sqrt{3}}{\sqrt{2}+3i}+\dfrac{-3+2i\sqrt{3}}{\sqrt{2}-3i}\)
Cho số phức z = a + b i a , b ∈ ℝ . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2.
B. 0.
C. 3.
D. 1.
Cho số phức z = a + b i ( a , b ∈ R ) . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2
B. 0
C. 3
D. 1
Cho hai số phức z_1,z_2z1,z2. Biết rằng z_1+z_2z1+z2 và z_1.z_2z1.z2 là hai số thực. Chứng tỏ rằng z_1,z_2z1,z2 là hai nghiệm của một phương trình bậc hai với hệ số thực ?
Cho hai đơn thức 1/3xy2z và -1/2x3y4z . Chứng tỏ rằng khi x, y, z lấy các gia trị khác 0 thì hai đơn thức trên có giá trị là hai số trái dấu.
Gọi số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 1 = 1 và ( 1 + i ) ( z ¯ - 1 ) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. ab=-2
B. ab=2
C. ab=1
D. ab=-1
Đáp án C
Phương pháp
Gọi số phức đã cho có dạng . Sử dụng giả thiết để đưa ra một hệ cho a, b giải trực tiếp hệ này để tìm a, b
Lời giải chi tiết.
Ta có:
Do z không là số thực nên ta phải có b ≠ 0 (2)
Ta lại có
Từ (1), (2), (3) ta có hệ
Gọi số phức z= a+bi (a,b∈ R) thỏa mãn |z-1|= 1 và ( 1 + i ) ( z ¯ - 1 ) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. ab= -2
B. ab= 2
C. ab= 1
D. ab= -1