Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Chí Dũng
Xem chi tiết
Nguyễn Trang
Xem chi tiết
Puca
Xem chi tiết
T.Ps
7 tháng 7 2019 lúc 21:18

#)Góp ý :

Bạn tham khảo nhé :

Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath

Link : https://olm.vn/hoi-dap/detail/218057796597.html

T.Ps
7 tháng 7 2019 lúc 21:19

#)Góp ý :

Bạn tham khảo nhé :

Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath

Link : https://olm.vn/hoi-dap/detail/218057796597.html

Tham khảo tại :

 Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath

_Hắc phong_

Cấn Ngọc Minh
Xem chi tiết
nguyen cao bao
21 tháng 7 2019 lúc 9:50

3k=(...01)

do 3*0=0 nen k phai thuoc n*

Võ Xuân Trường
Xem chi tiết
Nguyễn Huy Hải
27 tháng 9 2015 lúc 14:21

có đấy thui, bạn xem trong câu hỏi hay nha

tth_new
Xem chi tiết
Chủ acc bị dính lời nguy...
15 tháng 4 2019 lúc 20:23

bn tham khảo câu hỏi này nhé:

https://olm.vn/hoi-dap/detail/98207379947.html

k nha

^-^

zZz Cool Kid_new zZz
15 tháng 4 2019 lúc 21:54

Xét 1001 số \(3;3^2;3^3;.....;3^{1001}\) thì tồn tại 2 số khi chia cho 1000 có cùng số dư.

Giả sử 2 số \(3^m;3^n\left(1\le n< m\le1001\right)\) khi chia cho 1000 có cùng số dư.

Khi đó \(3^m-3^n⋮1000\)

\(\Rightarrow3^n\left(3^{m-n}-1\right)⋮1000\)

Lại có  \(\left(3^n;1000\right)=1\Rightarrow3^{m-n}-1⋮1000\)

\(\Rightarrow3^{m-n}=\overline{....001}\)

\(\Rightarrowđpcm\) 

Nguyễn Lê Khánh Linh
29 tháng 3 2020 lúc 10:23

Gọi dãy số: 3, 32, 33, …, 31001. Theo nguyên lý Di-rich-le luôn tồn hai số trong 1001 số trên khi chia cho 1000 có cùng số dư.

Giả sử hai số: 3m, 3n, trong đó: 1 ≤ n < m ≤ 1001.

=>3m – 3n ⋮ 1000

=> 3n.(3m-n – 1) ⋮ 1000

Vì 3n ko chia he^'t cho 1000 nên suy ra: 3m-n – 1 ⋮ 1000

=> 3m-n – 1 = 1000k (k \(\in\) N*)

=> 3m-n = 1000k + 1

=> 3m-n có chữ số tận cùng là 001

=> 3k có chữ số tận cùng là 001 (đpcm)

chu'c hok to^'t

Khách vãng lai đã xóa
Mai Nhật Lệ
Xem chi tiết
Lê Thanh Lan
Xem chi tiết
Đỗ Phương Thảo
Xem chi tiết
Đỗ Phương Thảo
6 tháng 11 2017 lúc 22:21

giải theo tiểu học nhé