Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Huyền
Xem chi tiết
Đinh Tuấn Việt
19 tháng 10 2015 lúc 21:48

a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3. 
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí) 
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 

b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5. 
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4. 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí) 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí). 
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5

Trần Sơn Việt
Xem chi tiết
Trần Sơn Việt
Xem chi tiết
Trần Sơn Việt
Xem chi tiết
Đỗ Nhật Linh
Xem chi tiết
Dương Thị Huyền
Xem chi tiết
Đại hồ điệp
Xem chi tiết
Đoàn Đức Hà
9 tháng 6 2021 lúc 15:35

Xét số nguyên \(x\)bất kì. 

\(x=3k\)\(x^3=27k^3⋮9\)

\(x=3k+1\)\(x^3=\left(3k+1\right)^3=27k^3+27k^2+9k+1\equiv1\left(mod9\right)\)

\(x=3k-1\)\(x^3=\left(3k-1\right)^3=27k^3-27k^2+9k-1\equiv-1\left(mod9\right)\)

Vậy lập phương của một số nguyên khi chia cho \(9\)chỉ có thể có dư là \(0,1,8\).

mà \(a^3+b^3+c^3=2007⋮9\)nên có ít nhất một trong ba số hạng đó chia hết cho \(9\).

khi đó nó chia hết cho \(3\).

Vậy \(abc⋮3\).

Khách vãng lai đã xóa
Lộc Nguyễn Trần Phước
Xem chi tiết
Nguyễn Tùng Chi
Xem chi tiết
nguyen duc thang
26 tháng 3 2018 lúc 17:27

Giả sử cả 3 số a; b; c đều không chia hết cho 3

=> a; b; c chia cho 3 dư 0 hoặc 1 

=> a2 ; b2 ; c2 chia cho 3 dư 1

=> a2 + b2 chia cho 3 dư 2  . Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 ( trái với đề bài )

Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3

=> a.b.c chia hết cho 3

Ta luôn có 3ab chia hết cho 3

Vậy abc + 3ab chia hết cho 3