Những câu hỏi liên quan
Nguyễn Thị Vân Anh
Xem chi tiết
Pham Thuy Duyen
Xem chi tiết
Khánh Linh florentino
Xem chi tiết
Khánh Linh florentino
5 tháng 2 2023 lúc 20:18

khó quá , các bạn giúp tớ với

 

Bình luận (0)
Trần Thu Ngân
Xem chi tiết
Anh Đức Lâm
Xem chi tiết
Lỗ Thị Thanh Lan
Xem chi tiết
Dat nguyen van
11 tháng 11 2014 lúc 21:57

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

Bình luận (0)
Lê Bảo Khanh
16 tháng 4 2016 lúc 20:15

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

Bình luận (0)
Lê Bảo Khanh
16 tháng 4 2016 lúc 20:23

b)Tương tự cách làm trên:

Nếu p=3k+1 thì 8p+1 =8(3k+1)+1=24k+8+1 =24k+9chia hết cho 3 nên là hợp số(loại)

Vậy.....................................

Bình luận (0)
Đặng Hồng Minh
Xem chi tiết
Công chúa Bạch Kim Ranis
Xem chi tiết
Mai Trung Nguyên
5 tháng 3 2018 lúc 19:33

Ta có: p là một số nguyên tố > 3 => p chia 3 dư 1 hoặc 2

=> p = 3n +1 ; p = 3n +2

=> p + 8 = 3n +9 ( là hợp số nên loại)

 p + 8 =  3n + 10 (nhận)

Ta có: p = 3n + 2

=> p + 100 = 3n + 102

=> đpcm

Bình luận (0)
Đức Phạm
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2017 lúc 17:41

quá dễ dàng

a) Mọi số tự nhiên lớn hơn 3 khi chia cho 6 chỉ có thể xảy ra một trong 6 trường hợp : dư 0, dư 1, dư 2, dư 3, dư 4, dư 5

+) nếu p chia 6 thì dư 0 thì p = 6k \(\Rightarrow\)p là hợp số

+) nếu p chia 6 thì dư 1 thì p = 6k + 1

+) nếu p chia 6 thì dư 2 thì p = 6k + 2 \(\Rightarrow\)p là hợp số

+) nếu p chia 6 thì dư 3 thì p = 6k + 3 \(\Rightarrow\)p là hợp số

+) nếu p chia 6 dư 4 thì p = 6k + 4 \(\Rightarrow\)p là hợp số

+) nếu p chia 6 dư 5 thì p = 6k + 5 

Vậy mọi số nguyên tố lớn hơn 3 chia cho 6 thì chỉ có thể dư 1 hoặc dư 5 tức là p = 6k + 1 hoặc p = 6k + 5

b) Nếu p có dạng = 6k + 1 thì 8p + 1 = 8 . ( 6k + 1 ) + 1 = 48k + 9 \(⋮\)3, là hợp số. Vậy p không có dạng 6k + 1 mà p có dạng 6k + 5,

khi đó 4p + 1 = 4 . ( 6k + 5 ) + 1 = 24k + 21k \(⋮\)3 . Rõ ràng 4p + 1 là hợp số

Bình luận (0)
Trần Hoàng Việt
5 tháng 11 2017 lúc 10:34

Ta có :

n2 + n + 1 = n . ( n + 1 ) + 1

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên n . (  n + 1 ) + 1 là một số lẻ nên không chia hết cho 4

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0

hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5

P/s đùng để ý đến câu trả lời của mình

Bình luận (0)
đội bóng lớp tiểu học
20 tháng 4 2018 lúc 21:22

4p + 1 là hợp số

Bình luận (0)
Huỳnh Ái Vy
Xem chi tiết