Cho A= 2n+1/n-3+3n-5/n-3-4n-5/n-3
a)Tìm n để A có giá trị nguyên
b)Tìm n để A là phân số tối giản
Cho A=2n+1/n-3+3n-5/n-3-4n-5/n-3
a, Tìm n để A có giá trị nguyên
b, Tìm n để A là phân số tối giản
chị ơi chị biết giải chưa chỉ em vs
Cho biểu thức A=2n+1/n-3 + 3n-5/n-3 -4n-5/n-3
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là phân số tối giản
/ là phần
A=(2n+1)/(n-3)+(3n-5)\(n-3)-(4n-5)\(n-3)
a\tìm n để Anhận giá trị nguyên(A thuộc Z)
b\tìm n để a là phân số tối giản
Cho biểu thức A=2n+1/n-3 +3n-5/n - 3 - 4n-5/n-3
a/ tìm n để A nhận giá trị nguyên?
b/ tìm n để A là phân số tối giản?
hộ mình nhé !!!!!!!!!!!!!!!!!!
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a,Tìm n để A nhận giá trị nguyên
b,Tìm n để A là phân số tối giản
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là phân số tối giản
cho biểu thức A=(2n+1)/(n-3) + (3n-5) /(n-3) - (4n-5) / (n-3)
a)Rút gọn A
b)tìm số tự nhiên n để A nhận giá trị là số nguyên
c)tìm số nguyên n để phân số A sau khi rút gọn là phân số tối giản
S=$\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}$
2n+1
n−3 +
3n−5
n−3 −
4n−5
n−3
a, tìm n để A là phân số tối giản
b, tìm n để S có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Câu hỏi tương tự Đọc thêm
Cho biểu thức :
A=\(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}_{ }-\frac{4n-5}{n-3}\)
a)Tìm n để A nhận giá trị nguyên
b)Tìm n để A là phân số tối giản
A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)
a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 8 | -2 | 13 | -7 | 23 | -17 |
Vậy...
b, Để A tối giản <=> UCLN(20,n-3) = 1
=> n-3 không chia hết cho 20
=> n-3 khác 20k (k thuộc Z)
=> n khác 20k + 3
Vậy.....
a) Ta có :
\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên
\(\Rightarrow14\)\(⋮\)\(n-3\)
\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }
lập bảng ta có :
n - 3 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 4 | 2 | 5 | 1 | 10 | -4 | 17 | -11 |
b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1
\(\Leftrightarrow\)n - 3 không chia hết cho 14
\(\Rightarrow\)n - 3 \(\ne\)14k
\(\Rightarrow\)n \(\ne\)14k + 3
Cho biểu thức A=\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tim n để A là phân số tối giản