Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Viên Tiến Duy
22 tháng 9 lúc 23:01

\(\dfrac{x}{8}=\dfrac{y}{-7}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x}{8}=\dfrac{y}{-7}=\dfrac{z}{12}=\dfrac{-3x+10y-2z}{-24-70-24}=\dfrac{236}{-118}=-2\)

Do đó

\(x=\left(-2\right)\times8=-16\)

\(y=\left(-2\right)\times\left(-7\right)=14\)

\(z=\left(-2\right)\times12=-24\)

Vậy x = -16 ; y = 14 ; z = -24

Hỏi toán
23 tháng 9 lúc 11:05

TTôi nghe nói Trong "Principia Mathematica" của Bertrand Russell và Alfred North Whitehead, việc chứng minh 1 + 1 = 2 mất khoảng 362 trang. Đây là một phần của nỗ lực xây dựng toán học dựa trên logic hình thức. Chứng minh này phản ánh sự phức tạp của các định nghĩa và tiên đề trong lý thuyết tập hợp và số học. Nếu bạn cần thêm thông tin về nội dung cụ thể, hãy cho tôi biết! Chứng minh 1 + 1 = 2 trong "Principia Mathematica" được xem là khó khăn vì nó yêu cầu hiểu biết sâu sắc về logic hình thức và các định nghĩa phức tạp. Mặc dù kết quả cuối cùng có vẻ đơn giản, quá trình chứng minh đòi hỏi nhiều bước logic và khái niệm toán học. Nếu bạn không quen với lý thuyết này, nó có thể khá trừu tượng và khó tiếp cận.

nguyentruongan
Xem chi tiết
Trịnh Văn Đại
7 tháng 10 2016 lúc 20:20

x/8=y/-7=z/21 va -3.x+10y-2z=236

x=12

y=15

z=13

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2017 lúc 8:34

Huỳnh Gia Phúc
Xem chi tiết
Nguyễn Linh Thư
Xem chi tiết
Phía sau một cô gái
18 tháng 12 2016 lúc 14:05

Theo đề bài, ta có:

\(\frac{x}{8}=\frac{y}{-7}=\frac{z}{12}\) và -3x + 10x - 2z

ADTCDTSBN:

\(\frac{x}{8}=\frac{y}{-7}=\frac{z}{12}=\frac{3x}{24}=\frac{10x}{-70}=\frac{2z}{24}=\frac{3x+10x-2z}{24+\left(-70\right)-24}=\frac{236}{-70}\)

*\(\frac{x}{8}=\frac{236}{-70}\rightarrow x=8\cdot\frac{236}{-70}=-\frac{944}{35}\)

*\(\frac{y}{-7}=\frac{236}{-70}\rightarrow y=-7\cdot\frac{236}{-70}=\frac{118}{5}\)

*\(\frac{z}{12}=\frac{236}{-70}\rightarrow12\cdot\frac{236}{-70}=-\frac{1416}{35}\)

\(\Rightarrow Vậy:x=-\frac{944}{35};y=\frac{118}{5};y=-\frac{1416}{35}\)

oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 14:37

tích mình đi

ai tích mình 

mình tích lại 

thanks

Tuan
28 tháng 7 2018 lúc 14:42

tích mk đi rùi mk k lại thanks

Trần Văn Kha
Xem chi tiết
mai thuy phuong
Xem chi tiết
Uyên
19 tháng 7 2018 lúc 20:36

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{7}\)

\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{17}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{7}=\frac{3x+y-2z}{9+8-7}=\frac{14}{10}=1,4\)

\(\Rightarrow\hept{\begin{cases}x=1,4\cdot3=4,2\\y=1,4\cdot8=11,2\\z=1,4\cdot8=10,8\end{cases}}\)

vậy_

Arima Kousei
19 tháng 7 2018 lúc 20:38

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{7}=\frac{3x}{9}=\frac{y}{8}=\frac{2z}{14}=\frac{3x+y-2z}{9+8-14}=\frac{14}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{14}{3}\\\frac{y}{8}=\frac{14}{3}\\\frac{z}{7}=\frac{14}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{14}{3}.3=14\\y=\frac{14}{3}.8=\frac{112}{3}\\z=\frac{14}{3}.7=\frac{98}{3}\end{cases}}}\)

Vậy \(x=14;y=\frac{112}{3};z=\frac{98}{3}\)

Điệp viên 007
19 tháng 7 2018 lúc 20:43

Áp dụng t/c DTSBN ta có:

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{7}=\frac{3x+y-2z}{3.3+8-2.7}=\frac{14}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{14}{3}\Rightarrow x=14\\\frac{y}{8}=\frac{14}{3}\Rightarrow y=\frac{112}{3}\\\frac{z}{7}=\frac{14}{3}\Rightarrow z=\frac{98}{3}\end{cases}}\)

Vậy \(x=14;y=\frac{112}{3};z=\frac{98}{3}\)

Trọng Nguyễn Phú
Xem chi tiết
Trí Tiên亗
6 tháng 3 2020 lúc 15:23

Đặt \(A=6x+10y+z\)\(B=3x-2y+4z\)

Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)

\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)

\(\Rightarrow A+5B⋮21\)(1)

+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )

+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)

Vậy ta có điều phải chứng minh.

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
6 tháng 3 2020 lúc 15:37

Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)

Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)

      \(=24x+40y+4z-3x+2y-4z\)

      \(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)

      \(=21x+42y=21.\left(x+2y\right)⋮21\)

  mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)

Điều ngược lại:

Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)

Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)

      \(=15x-10y+20z+6x+10y+z\)

      \(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)

      \(=21x+21z=21.\left(x+z\right)⋮21\)

  mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)

Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)

Khách vãng lai đã xóa
Nguyễn Khánh Trình
Xem chi tiết
Xyz OLM
31 tháng 7 2020 lúc 12:56

a) Ta có 3x = 2y = z 

=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)

=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)

b) 6x = 10y = 15z 

=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)

=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)

=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)

c) 6x = 4y = 2z

=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)

=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)

d) x = 3y = 2z

=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)

=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)

=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)

=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)

Khách vãng lai đã xóa