so sánh :
P = 1/1^2+1 / 2^2+1/3^2+ ... + 1/2014^2 và Q = 1+3/4
so sánh :
P = 1/1^2+1 / 2^2+1/3^2+ ... + 1/2014^2 và Q = 1+3/4
so sánh
P=1/1^2 + 1/2^2 +1/3^2 +...+1/2013^2 +1/2014^2 và Q=1+3/4
So sánh:
P=1/1^2+1/2^2=1/3^2+1/4^2+...+1/2013^2+1/2014^2 và Q=1/3/4
So sánh A và B :\(B=1+2+3+4+....+2014+2015\)\(A=1^2-2^2+3^2-4^2+5^2-6^2+...-2014^2+2015^2\)
Số số hạng của tổng B là:
\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)
\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)
\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)
\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)
Số số hạng của tổng A thuộc nguyên âm là:
\(\frac{2014}{2}=1007\)(số hạng)
\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)
\(A=\left(-2029105\right)+4060225\)
\(A=2031120\)
Mà \(2031120=2031120\)
\(\Rightarrow A=B\)
\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)
\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)
\(A=1+2+3+4+...+2015=B\)
So sánh \(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2013^2}+\frac{1}{2014^2}\)và \(Q=1\frac{3}{4}\)
so sánh P= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}\) và Q = \(1\frac{3}{4}\)
\(P=1+\frac{1}{2^2}+...+\frac{1}{2014^2}>1+\frac{1}{2^2}.1007\)
\(\Rightarrow P>1+\frac{1007}{4}\)
Vì \(P>1+\frac{1007}{4}\)
Mà \(1+\frac{1007}{4}>1+\frac{3}{4}\)
=>P>Q
So sánh: \(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và \(Q=1\frac{3}{4}\)
So sánh 1/2^2 + 1/3^2 + 1/4^2 + ...... + 1/2013^2 và 2014/2013
ta có :\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
cộng vế với vế ta được :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2013}=\frac{2012}{2013}< \frac{2014}{2013}\)
So sánh A và B:
\(A=\frac{1^2+2^2+3^2+...+10^2}{2^2+4^2+6^2+...+20^2}+\frac{1}{4}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}\)
so sánh \(E=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2015\sqrt{2014}}\) và 2