Tính a)1/1.2+1/2.3+.....+1/99.100 b)2/1.2.3+2/2.3.4+.....+2/98.99.100
tính tổng : A=1.5 + 5.9 + ....+97.101+101.105
B=1.2^2+2.3^2+3.4^2+....+99.100^2
C=1.2+3.4+5.6+7.8+...+99.100
D=1.2.3+2.3.4+...+98.99.100
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
1.Tính:
A=1.2+2.3+3.4+......+99.100
B=1.2.3+2.3.4+.....+98.99.100
C=1.2+2.3+5.6+.......+99.100
2.A=3+3^2+3^3+.....+3^2016
a,Chứng minh rằng A chia hết cho 52
b,Tìm cs tận cùng của A
Các bn giúp mk nha,ai nhanh,ai đúng mk k!
Chị dùg cách tính tổng đi
1. Tìm dãy cách đều bao nhiêu
2. Từ công thức tính tổng rồi suy ra
Tính A,B
A=1.2+2.3+3.4+4.5+...+99.100
B=1.2.3+2.3.4+3.4.5+...+98.99.100
\(A = 1.2+2.3+3.4+4.5+...+99.100\)
\(3A= 1.2.3+2.3.3+3.4.3+4.5.3+\)\(...+\)
\(99.100.3\)
\(3A = 1.2.3+2.3.(4-1)+3.4. (5-2)+\)
\(4.5. (6-3)+...+99.100. (101-98)\)
\(3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+\)
\(4.5.6-3.4.5+...+99.100.101-98.99.100\)
\(3A = 99 .100 .101\)
\(A = 99 .100 . 101 ÷ 3 \)
\(A = 333300\)
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 343400
# Học tốt☘️#
A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4B=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4B=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4B=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4B=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4B=98.99.100.101
=>B=98.99.100.101/4
# Học tốt!#
A=1.2+2.3+3.4+..........+99.100
B=1.3+3.5+5.7+...........+97.99
C=1.2.3+2.3.4+............98.99.100
A = 1.2. + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 2.3.1 + ... + 99.100.101 - 99.100.98
3A = 99.100.101
3A = 999900
A = 333300
A=1.2+2.3+3.4+...........+99.100
B=1.3+3.5+5.7+............+97.99
C=1.2.3+2.3.4+.............+98.99.100
lấy nick khác hả không qua được mắt tui đâu đồ bất công
1/1.2.3+1/2.3.4+...+1/98.99.100=k.(1/1.2-1/99.100)
A =1+1/1.2.3+1/2.3.4+...+1/98.99.100 . Biết 8A = 1/k .(1/1.2-1/99.100)tìm k
Tính:
a,A=1.2+2.3+3.4+......+99.100
b,B=1.3+2.4+3.5+......+99.101
c,C=1.4+2.5+3.6+......+99.102
d,D=1.2.3+2.3.4+3.4.5+.......+98.99.100
\(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+90.100\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=\left(99.100.101\right):3\)
\(\Rightarrow A=333300\)
\(B=1.3+2.4+3.5+...+99.101\)
\(\Rightarrow B=1\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+99\left(100+1\right)\)
\(\Rightarrow B=1.2+1+2.3+2+3.4+3+...+99.100+99\)
\(\Rightarrow B=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99\right)\)
\(\Rightarrow B=333300+4950\)
\(\Rightarrow B=338250\)
\(D=1.2.3+2.3.4+3.4.5+...+98.99.100\)
\(\Rightarrow4D=1.2.3.4+2.3.4.4+...+98.99.100.4\)
\(\Rightarrow4D=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+98.99.100\left(101-97\right)\)
\(\Rightarrow4D=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+98.99.100-97.98.99\)
\(\Rightarrow4D=98.99.100\)
\(\Rightarrow D=\left(98.99.100\right):4=242550\)
tính giá trị của biểu thức
A=4/1.2 + 4/2.3 + 4/3.4 + ... + 4/2019.2020
B=1/1.2.3 + 1/2.3.4 + 1/3.4.5 +... + 1/98.99.100
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)
\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)
Vậy \(A=\frac{2019}{505}.\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
Vậy \(B=\frac{4949}{19800}.\)
\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)
\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)
Đến đây tự tính
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
Số hơi bị dữ nên tính nốt nhé
a) \(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+........+\frac{4}{2019.2020}\)
\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2019.2020}\right)\)
\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=4.\left(1-\frac{1}{2020}\right)=4.\frac{2019}{2020}=\frac{2019}{505}\)