Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Chi
Xem chi tiết
Tuấn
1 tháng 8 2016 lúc 20:40

\(P=x+y+xy\Leftrightarrow P+1=\left(x+1\right)\left(y+1\right)=\left(\frac{b^2+c^2-a^2}{2bc}+1\right)\left(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1\right)\)
\(=\left(\frac{\left(b+c\right)^2-a^2}{2bc}\right)\left(\frac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}\right)=\frac{b^2+2bc+c^2-b^2+2bc-c^2}{2bc}=\frac{4bc}{2bc}=2\)
\(\Rightarrow P=1\)

Công Huỳnh Minh
1 tháng 8 2016 lúc 19:27

Nhận xét đề Toán. Có 2 cách giải cơ bản cho bài toán dạng này. 1 là thế trực tiếp x và y vào P và tính luôn, cách này quá thường, ai cũng nhìn ra, chỉ xài khi ta bí cách 2. Cách 2 là biến đổi P rồi mới thế.

Ở đây mình trình bày cách 2.

P = x + y + xy = x + (x +1) * y

    = x + P1

P1 =( \(\frac{b^2+c^2-a^2}{2bc}\)+ 1) * \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

     = \(\frac{\left(b+c\right)^2-a^2}{2bc}\)\(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

     = \(\frac{a^2-\left(b-c\right)^2}{2bc}\)

P = x + P1 = \(\frac{b^2+c^2-a^2}{2bc}\)\(\frac{a^2-\left(b-c\right)^2}{2bc}\)\(\frac{2bc}{2bc}\)= 1

Chúc bạn ngày càng học giỏi và xinh gái. 

Mạnh Lê
8 tháng 4 2017 lúc 6:09

Giá trị của \(P=1\)và các làm giống như hai bạn 

~ Chúc bạn học giỏi ~

Bé con
Xem chi tiết
Võ Hồng Phúc
10 tháng 2 2019 lúc 21:39

x+1=b2+c2−a22bc+1=b2+2bc+c2−a22bc=(b+c)2−a22bc" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

y(x+1)=a2−(b−c)2(b+c)2−a2.(b+c)2−a22bc=a2−(b−c)22bc" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

P=x+y+xy=x+y(x+1)=b2+c2−a22bc+a2−(b−c)22bc=b2+c2−a2+a2−(b−c)22bc=1" role="presentation" style="border:0px; direction:ltr; display:table-cell !important; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:40.583em; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; width:10000em; word-spacing:normal" class="MathJax_CHTML mjx-chtml mjx-full-width">

lucky tomato
Xem chi tiết
lucky tomato
30 tháng 3 2020 lúc 11:05

ko có số 7 nha các bạn

Khách vãng lai đã xóa
Lê Hồng Phúc
Xem chi tiết
không cần biết
Xem chi tiết
Degea
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Minh Quân Nguyễn
Xem chi tiết
không cần biết
Xem chi tiết
Nguyễn Thị BÍch Hậu
5 tháng 6 2015 lúc 13:49

\(D=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2-2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ac}{xz}\right)=4-2\frac{abz+bcx+acy}{xyz}\)

từ đề bài => \(\frac{x}{a}+\frac{y}{b}+\frac{c}{z}=\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Leftrightarrow\frac{abz+bcx+acy}{abc}=\frac{abz+bcx+acy}{xyz}\Rightarrow abc=xyz\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2=>\frac{abz+bcx+acy}{abc}=2.\)mà abc=xyz =>\(\frac{abz+bcx+acy}{xyz}=2.\)

=> \(D=4-2\frac{abz+bcx+acy}{xyz}=4-2\cdot2=0\)

 

nguyen thi huyen phuong
28 tháng 5 2015 lúc 15:02

D=2 2+2 2+  22

D=4+4+4

D=12