Cho \(x=\frac{b^2+c^2-a^2}{2bc}\) và \(y=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
Tính giá trị của biểu thức P=x+y+xy
thanks
Cho x = \(\frac{b^2+c^2-a^2}{2bc}\) ; y = \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\). Tính giá trị P = x+y+xy
\(P=x+y+xy\Leftrightarrow P+1=\left(x+1\right)\left(y+1\right)=\left(\frac{b^2+c^2-a^2}{2bc}+1\right)\left(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1\right)\)
\(=\left(\frac{\left(b+c\right)^2-a^2}{2bc}\right)\left(\frac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}\right)=\frac{b^2+2bc+c^2-b^2+2bc-c^2}{2bc}=\frac{4bc}{2bc}=2\)
\(\Rightarrow P=1\)
Nhận xét đề Toán. Có 2 cách giải cơ bản cho bài toán dạng này. 1 là thế trực tiếp x và y vào P và tính luôn, cách này quá thường, ai cũng nhìn ra, chỉ xài khi ta bí cách 2. Cách 2 là biến đổi P rồi mới thế.
Ở đây mình trình bày cách 2.
P = x + y + xy = x + (x +1) * y
= x + P1
P1 =( \(\frac{b^2+c^2-a^2}{2bc}\)+ 1) * \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
= \(\frac{\left(b+c\right)^2-a^2}{2bc}\)* \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
= \(\frac{a^2-\left(b-c\right)^2}{2bc}\)
P = x + P1 = \(\frac{b^2+c^2-a^2}{2bc}\)+ \(\frac{a^2-\left(b-c\right)^2}{2bc}\)= \(\frac{2bc}{2bc}\)= 1
Chúc bạn ngày càng học giỏi và xinh gái.
Giá trị của \(P=1\)và các làm giống như hai bạn
~ Chúc bạn học giỏi ~
Cho x = \(\frac{b^2+c^2-a^2}{2bc}\); y = \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\). Tính giá trị P = x + y +xy
x+1=b2+c2−a22bc+1=b2+2bc+c2−a22bc=(b+c)2−a22bc" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
y(x+1)=a2−(b−c)2(b+c)2−a2.(b+c)2−a22bc=a2−(b−c)22bc" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
P=x+y+xy=x+y(x+1)=b2+c2−a22bc+a2−(b−c)22bc=b2+c2−a2+a2−(b−c)22bc=1" role="presentation" style="border:0px; direction:ltr; display:table-cell !important; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:40.583em; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; width:10000em; word-spacing:normal" class="MathJax_CHTML mjx-chtml mjx-full-width">
ko có số 7 nha các bạn
Cho \(x=\frac{b^2+c^2-a^2}{2bc}\) và \(y=\frac{\left(a+b-c\right)\left(a+c-b\right)}{\left(a+b+c\right)\left(b+c-a\right)}\)
và \(b+c-a\ne0,bc\ne0,a+b+c\ne0\)
Tinh giá trị biểu thức \(P=x+y+xy+1\)
cho x= \(\frac{b^2+c^2-a^2}{2bc};\)
\(y=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
tính giá trị của P = x+y+xy
1. Cho ba số a,b,c khác 0 và đôi một khác nhau, thõa mãn a+b+c=0. Tính giá trị biểu thức: \(Q=\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
2.Cho biểu thức: \(C=\frac{x^2}{x+y-xy-y^2}-\frac{y^2}{x+y+xy+y^2}\); \(D=\frac{x^2y^2+x^2y^3}{1+x-y^2-xy^2}\)
a) Tính : C-D
b) Tìm các cặp giá trị nguyên (x;y) để C-D=10
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
tính giá trị biểu thức: A=\(\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
tính giá trị biểu thức \(D=\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
\(D=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2-2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ac}{xz}\right)=4-2\frac{abz+bcx+acy}{xyz}\)
từ đề bài => \(\frac{x}{a}+\frac{y}{b}+\frac{c}{z}=\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Leftrightarrow\frac{abz+bcx+acy}{abc}=\frac{abz+bcx+acy}{xyz}\Rightarrow abc=xyz\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2=>\frac{abz+bcx+acy}{abc}=2.\)mà abc=xyz =>\(\frac{abz+bcx+acy}{xyz}=2.\)
=> \(D=4-2\frac{abz+bcx+acy}{xyz}=4-2\cdot2=0\)