y+1=(4bc)/[(b+c)^2-a^2] (1)
x+1=[(b+c)^2-a^2]/(2bc) (2)
Nhân với nhau (1)*(2): (x+1)(y+1)=2
(x+1)(y+1)=xy+x+y+1
Vậy P=1
câu hỏi hay chưa không biết cách trả lời không tệ:
đáp án có thể sai do cộng trừ chưa đúng
y+1=(4bc)/[(b+c)^2-a^2] (1)
x+1=[(b+c)^2-a^2]/(2bc) (2)
Nhân với nhau (1)*(2): (x+1)(y+1)=2
(x+1)(y+1)=xy+x+y+1
Vậy P=1
câu hỏi hay chưa không biết cách trả lời không tệ:
đáp án có thể sai do cộng trừ chưa đúng
Cho a,b,c thỏa mãn \(a+b+c=\frac{1}{2}\); \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ne0\)
Giá trị của biểu thức \(P=\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ac+b}{\left(a+c\right)^2}=?\)
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\). Rút gọn biểu thức \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
1. Cho biểu thức :
A = \(\left(\frac{x-2}{2x-2}+\frac{3}{2x-2}-\frac{x+3}{2x+2}\right)\div\left(1-\frac{x-3}{x-y}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định .
b) Tính giá trị của biểu thức với x = 2005 .
c) Tìm giá trị của x để biểu thức A có giá trị bằng -1002 .
a) Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
b) Cho a, b, c khác nhau đôi một. Chứng minh rằng:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
Bài 1: Cho a,b,c đôi một khác nhau. Chứng minh rằng:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\) và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Mọi người làm nhanh giúp em với ạ!
cho B=\(\frac{x^4-5x^2+4}{x^4-10x^2+9}\)
a) tìm các giá trị của x để B có nghĩa
b)Tìm các giá trị của x để B=0
Rút gọn A=\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) biết x+y+z=0
Rút gọn biểu thức sau:
\(A=\frac{x^2-yz}{\left(x+y\right)\left(y+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)
Cho \(a+b+c=1\) \(\left(1\right)\) ; \(a^2+b^2+c^2=1\) \(\left(2\right)\) ; \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(3\right)\)
CMR : \(xy+yz+zx=0\)
Phân tích đa thức thành nhân tử
a) \(\left(x+y-2z\right)^3+\left(y+z-2x\right)^3+\left(z+x-2y\right)^3\)
b) \(a\left(c^2+b^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+bc\right)\)
c) (a+b+c)(ab+ac+bc)-abc
d) \(c\left(a+2b\right)^3-b\left(2a+b\right)^3\)
e) xy(x+y)-yz(y+z)+xz(x-z)