1x1!+2x2!+3x3!+4x4!+...+100x100!
tính tổng, đây là giai thứa các bạn nhé
1x1!+2x2!+3x3!+4x4!+...+100x100! = ?
giai thừa nhé
1x1!+2x2!+3x3!+4x4!+...+100x100!
1x1!+2x2!+3x3!+4x4!+...+100x100! = ?
Tìm D=1x1!+2x2!+3x3!+4x4!+...+100x100!
Ta có :
\(D=1.1!+2.2!+...+100.100!\)
\(=\left(2-1\right)1!+\left(3-1\right).2!+\left(4-1\right).3!+...+\left(101-1\right).100!\)
\(=2!-1!+3!-2!+4!-3!+...+101!-100!\)
\(=101!-1!\)
Số quá lớn nhé :)
A=1x2+2x3+3x4+...+49x50
B=1x3+3x5+5x7+...+99x101
C=1x2x3+2x3x4+3x4x5+...+50x51x52
D=1x4+2x5+3x6+...+60x63
E=1x1+2x2+3x3+...+50x50
F=1x1+3x3+5x5+...+71x71
G=1x1+4x4+7x7+...+100x100
I=1x2x3+3x4x5+5x6x7+...+69x70x71
A=1x2+2x3+3x4+...+49x50
3A= 3(1.2+2.3+3.4+...+49.50)
3A= 1.2.3+2.3.3+3.4.3+...+49.50.3
3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+49.50.(51-48)
3A= 0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51
3A= 49.50.51
A= 49.50.51/3=41650
B=1x3+3x5+5x7+...+99x101
B=1/1.3 +1/3.5 +...+1/99.101
2B=2/1.3 + 2/3.5 +...+2/99.101
2B=1-1/3+1/3-1/5+...+1/99-1/101
2B=1-1/101
2B=100/101
B=100/101:2=100/202
C=1x2x3+2x3x4+3x4x5+...+50x51x52
Nhân C với 4 ta được:
C x 4 = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+50x51x52x4
C x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 50x51x52x(53-49)
C x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... +49x 50x51x52 - 50x51x52x53
Sau khi cộng - trừ giản ước ta có : C x 4 = 50x51x52x53
C = 50x51x52x53 : 4 = 1756950
2x2+3x3+4x4+..............+100x100. tính tổng đó
2.2+3.3+4.4+...+100.100
= 22+32+42+...+1002
= 12+22+32+...+1002-1
=\(\dfrac{100.\left(100+1\right).\left(2.100+1\right)}{6}\)-1
=338350-1
=338349
A=1x1+2x2+3x3+...+100x100
Cho tổng : A=1/2x2+1/3x3+1/4x4+...+1/100x100. Chứng tỏ A<25/26
A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)
=> A= \(\frac{99}{100}>\frac{25}{26}\)
Cho tổng A = 1/2x2 + 1/ 3x3 + 1/4x4 + ... + 1/ 100x100. Chứng tỏ rằng A < 25/36