Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a+b+c khác 0.Tính \(\frac{a^3b^2c^{1930}}{a^{1935}}\)
GIÚP MIK VS MOI NGƯỜI ƠI!HUHUHUHU!
1. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0;a=2003\) . Tính b,c
2. CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0\). Tính \(M=\frac{a^3b^2c^{1930}}{b^{1935}}\)
Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))
1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)
2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)
Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)
Cho \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4;\); a'+b'+c' khác 0;a'-3b'2c' khác 0.
Tính:\(\frac{a-3b+2c}{a'-3b'+2c'}\)
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}\) mà\(\frac{a}{a'}=4\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}\)
Biết \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\); a'+b'+c' khác 0 ; a'-3b+2c' khác 0. Tính:
a) \(\frac{a-3b+2c}{a'+3b'+2c'}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)
a. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a+b+c=0. Tính \(\frac{a^3b^2c^{1930}}{a^{1935}}\)
b. So sánh 910và 89+79+69...+29+19
Mỗi câu trả lời đúng bạn sẽ có 2like
cho a,b,c khác 0 và \(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}\)
Tính \(P=\frac{2a+b}{c}+\frac{2b+c}{a}+\frac{3b}{2c+a}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}vàa+b+c\ne0\) Tính M=\(\frac{a^2b^2c^{1930}}{b^{1935}}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c (a; b; c khác 0 vì b; a; c là các mẫu số)
=> \(M=\frac{a^2b^2c^{1930}}{b^{1935}}=\frac{b^2b^2b^{1930}}{b^{1935}}=\frac{b^{1934}}{b^{1935}}=\frac{1}{b}\)
Mà a = b = c
=> \(M=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Cho \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\)và a' - 3b' + 2 c' khác 0.Tính
P = \(\frac{a-3b+2c}{a'-3b'+2c'}\)
Cho biết : \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{a}\)và a + b + c khác 0
Tính M = \(\frac{a^3.b^2.c^{1930}}{c^{1935}}\)
theo tích chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
ta có\(\frac{a^3.b^2.c^{1930}}{c^{1935}}=\frac{c^3.c^2.c^{1930}}{c^{1935}}=\frac{c^{1935}}{c^{1935}}=1\)
Tìm x,y biết
a)\(\frac{4+x}{7+y}=\frac{4}{7}\)và x+y =22
b) Cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\)tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
c) Tính giá trị của biểu thức sau , biết x+y-2=0
M=x3+x2y-2x2-xy-y2+3y+x+2006
d) Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c khác 0.tính\(\frac{a^3b^2c^{1930}}{a^{1935}}\)