số chình phương có 4 chữ số chia hết cho 153 là
Gọi a là số chính phương có 4 chữ số chia hết cho 153. Vậy a bằng bao nhiêu?
\(153=17.3^2\)
a=k.17.3^2
a chinh phuong => k=17.n^2
a=(51)^2.n^2=2601.n^2
A<9999=>n^2<4=n={1,}
a=2601
Cho a là số chính phương có 4 chữ số và chia hết cho 153. Tìm a?
Mình cần gấp lắm. Cảm ơn các bạn!!!
gọi số tự nhiên phải tìm là a2(9999<a2>1000)
Vì a2 chia hết cho 153 =>a2=153.k=32.17.k (k>0)
=>k=17.t2 (t>0).
Với t=1=>k=17 =>a2=32.172=2601(thỏa)
Với t=2=>k=68 =>a2=32.17.68=10404(không thỏa nên không xét tiếp)
Vậy số chính phương có 4 chữ số phải tìm là 2601
Số đó là:2601
Nick Nguyễn đức toàn là của mình
Nhưng k nick này hộ mình nhé
Nick đó lập để troll bn mình í mà
1,
a, Tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
b, Tìm số chính phương có 3 chữ số chia hết cho 56
c, Tìm số chính phương có 4 chữ số chia hết cho 33
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
Số A= 444...4( 2003 chữ số 4) có là số chình phương ko
có A chia hết cho 4 ,nhug ko chia hết cho 4^2
=>a không phải là số chính phương
________________________________________
li-ke cho mk nha bn Vũ Thùy Linh
Số chính phương là một số bằng bình phương của một số tự nhiên
FTính chất
a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi
2; 3; 7; 8.
b) Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,
c) Một số chính phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó
là số lẻ.
d) Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số
nguyên tố với số mũ chẵn ,không chứa thừa số nguyên tố với số mũ lẻ .
FTừ tính chất này suy ra
-Số chính phương chia hết cho 2 thì chia hết cho 4.
-Số chính phương chia hết cho 3 thì chia hết cho 9.
-Số chính phương chia hết cho 5 thì chia hết cho 25.
-Số chính phương chia hết cho 8 thì chia hết cho 16.
cho số 153*710*4*12 có 12 chữ số. Chứng minh rằng nếu thay các dấu sao bởi các chữ số khác nhau trong ba chữ số: 1;2;3 một cách tùy ý thì số đó luôn chia hết cho 396
tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 (k là số tự nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa mãn, vậy X= 147*24 = 3969 = 63^2.
tìm 1 số chính phương có 4 chữ số và có chữ số tận cùng là 9 chia hết cho 47
tìm số chính phương có 4 chữ số , chia hết cho 47 và có chữ số tận cùng là 9