So sánh:
A = \(\frac{2011^{2012}+1}{2011^{2013}+1}\)với B = \(\frac{2011^{2013}+1}{2011^{2014}+1}\)
So sánh:
A = \(\frac{2011^{2012}+1}{2011^{2013}+1}\)với B = \(\frac{2011^{2013}+1}{2011^{2014}+1}\)
So sánh \(C=\frac{2011^{2012}+1}{2011^{2013}+1}\)và \(D=\frac{2011^{2013}+1}{2011^{2014}+1}\)
D=\(\frac{2011^{2013}+1}{2011^{2014}+1}\)
<\(\frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}\)
<\(\frac{2011^{2013}+2011}{2011^{2014}+2011}\)
<\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}\)
<\(\frac{2011^{2012}+1}{2011^{2013}+1}\)
<C
Vậy C>D
Cách 2:
Ta có: \(2011C=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)
\(2011D=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)
Mà \(\frac{2010}{2011^{2013}+1}>\frac{2010}{2011^{2014}+1}\Rightarrow1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)
\(\Rightarrow2011C>2011D\)
\(\Rightarrow C>D\)
Vậy C > D
So sánh A và B , biết rằng :
A = \(-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)và B = \(\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
so sánh\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}vs4\)
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)
\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)
\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)
Ta có:
\(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)
\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)
\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )
\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Tham khảo nhé~
Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4
Ta có:
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}=4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}\)
Vì\(\frac{1}{2013}>\frac{1}{2014},\frac{1}{2012}>\frac{1}{2014},\frac{1}{2011}>\frac{1}{2014}\)
=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}>\frac{3}{2014}\)
=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>0\)
=>\(4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>4\)
So sánh:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)và\(\frac{2010}{2008}+\frac{2011}{2013}+\frac{2012}{2014}+\frac{2013}{2015}\)
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
câu 1:
a) so sánh A và B biết
A=2011^2012-2011^2011
B=2011^2013-2011^2012
b)tính:
S=\(\frac{27.4500+135.550.2}{2+4+6+....+16+18}\)
"." là dấu nhân
câu 2:
chứng minh: 2013^2014- 4 chia hết 7
a,ta có:
A=2011^2012-2011^2011
=2011^2011(2011-1)
=2011^2011.2010
và B = 2011^2013-2011^2012
=2011^2012(2011-1)
=2011^2012.2010
Vì 2011^2011<2011^2012 => 2011^2011.2010< 2011^2012.2010
=>A<B
a,ta có:
A=2011^2012-2011^2011
=2011^2011(2011-1)
=2011^2011.2010
và B = 2011^2013-2011^2012
=2011^2012(2011-1)
=2011^2012.2010
Vì 2011^2011<2011^2012 => 2011^2011.2010< 2011^2012.2010
=>A<B
So sánh : A=20112012+1/20112013+1 với B=20112013+1/20112014+1
mong các bạn giúp đỡ và trình bày rõ hộ mk ạ . hiii
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}