chứng minh rằng nếu n là số nguyên n^5+5n^3-6n chia hết cho 30
Chứng minh rằng \(5n^3+15n^2+10n\)luôn luôn chia hết cho 30 với mọi n là số nguyên
Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n
=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n)
5n (n+1).(n+2)
do n (n=1) (n+2)chia hết cho 6
suy ra Achia hết cho 30(n thuộc z)
chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2+4 và n2+16 là các số nguyên tố n chia hết cho 5
Gọi: \(A=n^2+4\)và \(B=n^2+16\)
Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)
và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)
Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5.
Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5.
Suy ra n chia hết cho 5. ĐPCM.
Bài 1: Chứng minh rằng
a)a^5-a chia hết cho5
b) n^3+6n^2+8n chia hết cho 48 với mọi n chẵn
c) Cho a là số nguyên tố hớn hơn 3. CMR a^-1 chia hết cho 24
d) Nếu a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6
e)2009^2010 không chia hết cho 2010
f) n^2+7n+22 không chia hết cho 9
chứng tỏ rằng nếu 3 số a, a+n,a+2n đều là số nguyên lớn hơn 3 thì n chia hết cho 6
Chứng minh rằng :
a) tổng của n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ.
b) Tổng của n dố tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn
Cho \(A=n!+1,B=n+1\left(n\inℕ^∗\right)\). Chứng minh rằng nếu A chia hết cho B thì B là số nguyên tố
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì ( p - 1 ) ( p + 1 ) chia hết cho 24.
Theo đề bài: p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p = 2k + 1 ( \(k\in z;k>1\))
=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)
=> A chia hết cho 8 (1)
Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))
=> A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 24
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
+) Với p = 3k + 1:
=> (p – 1)(p + 1) = 3k.(3k + 2) ⋮ 3 (2a)
+) Với p = 3k + 2:
=> (p – 1)(p + 1) = (3k – 1).3.(k + 1) ⋮ 3 (2b)
Từ (2a), (2b) suy ra: (p – 1)(p + 1) ⋮ 3 (2)
Vì (8, 3) = 1, từ (1) và (2) suy ra: (p – 1)(p + 1) ⋮ 24 (đpcm).
chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)x(p+1) chia hết cho 24