tim cac so nguyen duong thoa man \(x^2\)+ \(y^3\)+ \(^{z^4}\)=90
tim cac so nguyen duong x,y,z thoa man x^2+y^3+z^4
Tim cac so nguyen duong x;y;z thoa man x!+y!=10.z+9
tim cac so x y z nguyen duong thoa man x3+3x2+5=5y va x+3=5z
cho x,y,z la cac so huu ti duong thoa man x+1/yz y +1/xz z+1/xy la cac so nguyen tim gia tri lon nhat cua bieu thuc A=x+y^2+z^3
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
Tim cac so nguyen duong thoa man: 1/x+1/y=2/3
Giả sử :
\(x\le y\)(1)
=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{y}\)
=> \(\frac{2}{3}\ge\frac{2}{y}\)
=> \(\frac{1}{3}\ge\frac{1}{y}\Rightarrow3\ge y\)(2)
Lại có :
\(\frac{1}{x}+\frac{1}{y}\le\frac{2}{x}\)
=> \(\frac{2}{3}\le\frac{2}{x}\Rightarrow3\le x\)(3)
Từ (1) , (2) , (3)
=> \(3\le x\le y\le3\)
=> x = y = 3
Cho x,y,z la cac so nguyen duong thoa man 1/x + 1/y + 1/z = 2015.
Tim GTLN cua bieu thuc P=x+y/x^2+y^2 + y+z/y^2+z^2 + z+x/z^2+x^2
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
tim cac so nguyen duong x,y thoa man 2x+3y=14
Vì 14 ⋮ 2 => 2x + 3y ⋮ 2
Mà 2x ⋮ 2 => 3y ⋮ 2
Mà ( 2; 3) = 1 => y ⋮ 2
2x + 3y = 14 => 3y ≤ 14
=> y ≤ 14 / 3 => y ≤ 4 => y = 2 ; 4
Với y = 2 <=> 2x + 6 = 14 => 2x = 8 => x = 4
Với y = 4 <=> 2x + 12 = 14 => 2x = 2 => x = 1
Vậy ( x;y ) = { ( 4;2 ) ; ( 1 ; 4 ) }
tim cac so nguyen duong x;y;z thoa man \(3x^2-18y^2+2z^2+3y^2z^2-18x=27\)