cho biểu thức Q= 1+3+3^2+3^3+3^4 .........................+ 3^31.
chứng minh rằng Q= \(\frac{3^{31}-1}{2}\)
Bài 4 :
a) Tính giá trị của biểu thức :
\(A=\left(\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right)\cdot\frac{31}{50}\)
b) Chứng tỏ rằng : \(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
1)\(|x-\frac{2}{7}|=\frac{-1}{5}.\frac{-5}{7}\)
2)\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2008}-1\right)\left(\frac{1}{2009}-1\right)\)
3) Chứng tỏ rằng \(5^{61}+25^{31}+125^{21}\)chia hết cho 31
4)Tìm giá trị nhỏ nhất của biểu thức: \(A=|x-2011|+|x-200|\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)
\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1}{2009}\)
1,
\(| x - \frac{2}{7} | = \frac{-1}{5}.\frac{-5}{7}\)
\(|x- \frac{2}{7}|=\frac{1}{7}\)
<=> \(x- \frac{2}{7} = \frac{1}{7} => x= \frac{3}{7} \)
Và \(x - \frac{2}{7} =\frac{-1}{7} => x= \frac{1}{7}\)
Học tốt
\(5^{61}+25^{31}+125^{21}\)
\(=5^{61}+\left(5^2\right)^{31}+\left(5^3\right)^{21}\)
\(=5^{61}\cdot5^{2\cdot31}\cdot5^{3\cdot21}\)
\(=5^{61}+5^{62}+5^{63}\)
\(=5^{61}\cdot\left(1+5+5^2\right)\)
\(=5^{61}\cdot\left(6+5^2\right)\)
\(=5^{61}\cdot\left(6+25\right)\)
\(=5^{61}\cdot31\)
Vì \(5^{61}\inℤ\)
\(\Rightarrow5^{61}\cdot31⋮31\)
\(\Rightarrow5^{61}+25^{31}+125^{21}⋮31\)
Vậy bài toán đã được chứng minh .
cho A=1+3+32+33+.......+331
chứng minh rằng A=\(\frac{3^{32}-1}{2}\)
\(A=1+3+3^2+3^3+.....+3^{31}\)
\(\Rightarrow3A=3+3^2+3^3+.....+3^{32}\)
\(\Rightarrow3A-A=2A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{2}\left(đpcm\right)\)
Q= 1+3+3^2+3^3...........+3^31
chứng minh rằng Q = 3^31-1/2
Chứng minh rằng :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\) \(\frac{31}{15^2.16^2}< 1\)
Ta có : \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{31}{15^2.16^2}\)
= \(\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+...+\dfrac{16^2-15^2}{15^2.16^2}\)
= \(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{15^2}-\dfrac{1}{16^2}\)
= \(1-\dfrac{1}{16^2}< 1\)
Cho biểu thức \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
Chứng minh rằng \(C< \frac{3}{16}\)
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^2}+...+\frac{99}{3^{89}}-\frac{100}{3^{99}}\)
\(\Rightarrow4C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\left(1\right)\)
Đặt: \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(\Rightarrow3B=2+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
\(4B=B+3B=3-\frac{1}{3^{99}}< 3\)
\(\Rightarrow B< \frac{3}{4}\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow4C< B< \frac{3}{4}\)
\(\Rightarrow C< \frac{3}{16}\left(đpcm\right)\)
(Đánh nhanh quá sai chỗ nào thông cảm nha :))
Cho biểu thức \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
Chứng minh rằng \(C< \frac{3}{16}\)
a)\(\frac{x-3}{2}\)+ \(\frac{x-3}{3}\)= \(\frac{x-3}{4}\)
b)Cho 31 số hữu tỉ sao cho bất kì 3 số nào trong chúng cũng có tổng là một số âm.Chứng minh rằng tổng 31 số đó là 1 số âm
Làm được mỗi câu a :)
\(\frac{x-3}{2}+\frac{x-3}{3}=\frac{x-3}{4}\)
\(\Leftrightarrow\frac{x-3}{2}+\frac{x-3}{3}-\frac{x-3}{4}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)=0\)
Vì \(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\ne0\) nên x - 3 = 0
Vậy x = 3
Chứng minh rằng :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\) \(\frac{31}{15^2.16^2}< 1\)
Đặt A là biểu thức trên
\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{31}{15^2.16^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{31}{225.256}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{225}-\frac{1}{256}\)
\(=1-\frac{1}{256}=\frac{255}{256}< 1\)
Vậy...