Chứng minh :
A = 2n + 11.......1 \(⋮\) 3 . ( n chữ số 1 )
chứng minh rằng
a, A = 2n+11...1 chia hết cho 3 [biết 11...1 có n chữ số
Cho a=11...11(2n chữ số 1); b = 44...4 (n chữ số 4). Chứng minh rằng: a+b+1 là số chính phương
chứng minh A=11...11 - 22...22 (có 2n chữ số 1 và n chữ số 2) là một số chính phương
chứng minh các số sau chính phương:
a) A=11...155..56 (có n chữ số 1, có n-1 chữ số 5)
b) B=a.b +4 với a=11...1 (có n chữ số 1) và b=100...011 (có n-2 chữ số 0)
c) C= 11...1 (cs 2n chữ số 1)+ 11...1(có n+1 chữ số 1) + 666...6 (có n số 6) +8
giúp mình với ạ, mình cảm ơn
chứng minh rằng :
a,2n+11...........1 chia hết cho 3 (n chữ số 1)
b,10^n+18n-1chia hết cho 27
Cho a = 11...11 ( 2n chữ số 1 );b = 44...4 ( n chữ số 4 ).
Chứng minh rằng : a+b+1 là số chính phương.
Bài 1: Chứng minh A= 11...1-22...2 (có 2n chữ số 1 va n chữ số 2) là số chính phương với n là số nguyên dương
Bài 2: Chứng minh B=11...122...2 là tích 2 số nguyên liên tiếp
1. Câu hỏi của H - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
Ta tách 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 nên 111...1(n chữ số 1) và n có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => Vế phải chia hết cho 3. Vậy thì vế trái cũng chia hết cho 3 hay 2n + 111...1 chia hết cho 3
Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
*Với n=3k , ta có :
\(2n+111...11=2.3k+111...11⋮3\) (1)
*Với n = 3k +1 , ta có :
\(2n+111...11=2.3k+1+111...11\)
\(=2.3k+111...12⋮3\) (2)
Từ (1) và (2) => \(2n+111...11⋮3\)
2n + 111...11 ( n chữ số 1 )
chia hết cho 3 thì tổng chia hết cho 3
= 2n + 1+1+1+..+1+1( n chữ số +1)
=2n+1n ( ví dụ nlaf 3 thì 1+1+1=3 . 1 =3 )
=3n
suy ra 3n chia hết cho 3
Chứng minh : 2n +11...1 chia hết cho 3 (số các chữ số của 1 phụ thuộc vào n)