Chứng minh : Trong 11 số tự nhiên bất kì luôn tìm được hai số có chữ số tận cùng giống nhau ?
Chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0; 1; 2; 3; 4; 5; 6; 7; 8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận cùng giống nhau.
Vậy .....
Cho 11 số tự nhiên bất kì . Chứng minh rằng trong đó chắc chắn phải có 2 số có chữ số tận cùng giống nhau
Các số tự nhiên đều có chữ số tận cùng là : 0; 1; 2 ; 3; 4; 5; 6; 7; 8; 9.
Trong trường hợp xấu nhất, 10 số đầu tiên đều có các chữ số tận cùng khác nhau. Khi đó số cuối cùng sẽ phải có chữ số tận cùng giống với 10 số còn lại.
Vậy chắc chắn rằng phải có 2 số có chữ số tận cùng giống nhau.
Chứng minh rằng trong 21 số tự nhiên bất kì thì bao giờ cũng tìm được 3 số có chữ số tận cùng giống nhau.
chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau
trả lời giups mình với mình tích cho , thiệt
Trời ơi đếm cũng biết mà 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21
vì nó có 11 số theo sự lặp đi lặp lại như 1 =>11 , 11=>21...
Cho 11 số tự nhiên. Chứng minh rằng luôn chọn được 2 số có chữ số tận cùng giống nhau.
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận cùng giống nhau.
chứng minh rằng trong 11 số tự nhiên liên tiếp luôn có 2 số có chữ số tận cùng giống nhau
Có tất cả 10 chữ số tận cùng là 0,1,2,3,4,5,6,7,8,9
Mà có 11 số nên theo nguyên lý Đirichlê có 2 số có tận cùng giống nhau.
Chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau
có 11 số,mà những số đó chắc chắn có chữ số tận cùng là:0;1;2;3;4;5;6;7;8;9 (có mười số).Nếu những số đó ko có một hoặc hai,.... những số trên thì sẽ có ít nhất hai số cos số tận cùng giống nhau.
Nếu những số đó có những số trên thì:
Sẽ còn thừa :
11 - 10 = 1 ( số)
Như vậy số tận cùng của số đó chắc chắn sẽ rơi vào những số trê.
Vậy 11 số bất kì lúc nào cũng có ít nhất hai số có chữ số tận cùng giống nhau.
Chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau
Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Cách 2
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận ucngf giống nhau.
Vậy trong 11 STN...
Có thể mình trình bày chưa chính xác lắm, bạn có thể sửa lại cách trình bày. ^ - ^
Chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau
bạn cho ví dụ cụ thể ra ;
VD 1234567891011
có 1 và 11 có tận cùng giống nhau