Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bụi mù trời
Xem chi tiết
Nguyễn Mạnh Hùng
1 tháng 9 2021 lúc 20:51

,!,!a,a,a,a

Khách vãng lai đã xóa
Vip Boy HandSome
Xem chi tiết
Carthrine
13 tháng 7 2016 lúc 20:15

câu thứ 2

 a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17 
10a-50b=10a+b-51b 
51b chia hết cho 17 nên 10a+b chia hết cho 17

SKT_Rengar Thợ Săn Bóng...
13 tháng 7 2016 lúc 20:15

51a : 17

=> 51a - a + 5b : 17

=> 50a + 5b : 17

=> 5 ( 10a + b ) : 17

=> 10a + b : 17

o0o I am a studious pers...
13 tháng 7 2016 lúc 20:17

Ta có : tích của 2 và 3 thì chia hết cho 17 

=> 10a = 2 x 5  x a + b chia hết cho 17

Những câu dưới bạn tự làm nha

Haru
Xem chi tiết
Nguyễn Ngọc Anh Minh
16 tháng 8 2021 lúc 8:12

\(\overline{abc}=100a+10b+c=\left(98a+7b\right)+\left(2a+3b+c\right)⋮7\)

Mà \(98a+7b⋮7\Rightarrow2a+3b+c⋮7\)

Khách vãng lai đã xóa
Lại Thanh Tùng
16 tháng 8 2021 lúc 8:14

                                   Giải

Ta có: abc⋮7

       =>100a+10b+c⋮7

        =>98a+2a+7b+3b+c⋮7

         Mà: 98a⋮7

                7b⋮7 

        

Khách vãng lai đã xóa

Giả sử: abc+ ( 2a+3b+c) chia hết cho 7, ta có:

abc+ ( 2a+3b+c)=  a.100+b.10+c+2a+3b+c

                            =   a.98+7.b 

Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7 => a.98+7.b chia hết cho 7

=> abc+ ( 2a+3b+c) chia hết cho 7 

Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 (theo tính chất chia hết của một tổng)

Khách vãng lai đã xóa
Nguyễn Nhật Quang
Xem chi tiết
Đậu Minh Thắng
8 tháng 1 2017 lúc 10:39

abc=100a+10b+c

      =98a+2a+7b+3b+c

      =98a+7b+2a+3b+c

vì abc chia hết cho 7 nên 98a+7b+2a+3b+c chia hết cho 7.

=>2a+3b+c chia hết cho 7

Khúc Thị Ngân Hà
Xem chi tiết
Nguyễn Thị Kim Ngân
3 tháng 4 lúc 21:23

Số đó chia hết nghẹn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hiển Ngôquang
Xem chi tiết
do thanh hung
Xem chi tiết
Đặng Ngọc Quỳnh
16 tháng 1 2021 lúc 19:21

Ta có: \(\overline{abc}=100a+10b+c=98a+2a+7b+3b+c\)

\(=\left(98a+7b\right)+\left(2a+3b+c\right)=7\left(14a+b\right)+\left(2a+3b+c\right)\)

Lại có: \(7\left(14a+b\right)⋮7\Rightarrow\left(2a+3b+c\right)⋮7\left(đpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Mạnh Trung
Xem chi tiết
Kẻ Dối_Trá
31 tháng 7 2016 lúc 17:45

Ví dụ: abc+ ( 2a+3b+c) chia hết cho 7, ta có:

abc+ ( 2a+3b+c)=  a.100+b.10+c+2a+3b+c

 =   a.98+7.b 

Vì a.98 chia hết cho 7 ;98 chia hết cho 7 , 7.b chia hết cho 7 => a.98+7.b chia hết cho 7

Suy ra: abc+ ( 2a+3b+c) chia hết cho 7 

Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 .

Nguyễn Thị Hà Phương
Xem chi tiết
Hồ Quang Trường
6 tháng 2 2017 lúc 5:32

Ta có: \(\overline{abc}⋮7\)

       \(=>100a+10b+c⋮7\)

        \(=>98a+2a+7b+3b+c⋮7\)

         Mà: \(98a⋮7\)

                \(7b⋮7\) 

        \(=>2a+3b+c⋮7\)