Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Quỳnh Hoa
Xem chi tiết
Trịnh Thành Công
3 tháng 12 2016 lúc 21:26

Đặt \(A=\frac{2x^3+x^2-2x+1}{x^3+2x^2-x-2}\)

        \(A=\frac{x^2.\left(2x+1\right)-2x-1+2}{x^3+x^2+x^2+x-2x-2}\)

        \(A=\frac{x^2\left(2x+1\right)-\left(2x+1\right)+2}{\left(x^2+x-2\right)\left(x+1\right)}\)

       \(A=\frac{\left(x^2-1\right)\left(2x+1\right)+2}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}\)

       \(A=\frac{\left(x-1\right)\left(x+1\right)\left(2x+1\right)+2}{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}\)

       \(A=1+\frac{2}{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}\)

Kim Anh
Xem chi tiết
Bui Huyen
28 tháng 7 2019 lúc 18:55

mẫu của phân số thứ 2 bị sai pk bạn???

Kim Anh
28 tháng 7 2019 lúc 20:30

mk k bt nx, vậy đúng thì ntn ??

Bui Huyen
28 tháng 7 2019 lúc 22:22

Mk sửa đề nha bạn

\(M=\frac{2x}{x^2-1}+\frac{4x}{x^3-3x-x+3}-\frac{2}{3+2x-x^2}\)

\(M=\frac{2x}{x^2-1}+\frac{4x}{\left(x^2-1\right)\left(x-3\right)}-\frac{2}{\left(3-x\right)\left(x+1\right)}\)

\(M=\frac{2x\left(x-3\right)}{\left(x^2-1\right)\left(x-3\right)}+\frac{4x}{\left(x^2-1\right)\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x^2-1\right)\left(x-3\right)}\)

\(M=\frac{2x^2-6x+4x+2x-2}{\left(x^2-1\right)\left(x-3\right)}=\frac{2x^2-2}{\left(x^2-1\right)\left(x-3\right)}=\frac{2\left(x^2-1\right)}{\left(x^2-1\right)\left(x-3\right)}\)

\(M=\frac{2}{x-3}\)

Bạn tự giải và tìm đkxđ nha

肖赵战颖
Xem chi tiết
Quỳnh
31 tháng 10 2020 lúc 19:45

Bài làm

Như đã nhắn là mình sẽ làm theo quan điểm của mình là 5/(x^2 - 1) nha

\(A=\left[\frac{3\left(x+2\right)}{2x^3+2x+2x^2+2}+\frac{2x^2-x-10}{2x^3-2-2x^2+2x}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2x+2}-\frac{3}{2x-2}\right]\)

\(A=\left[\frac{3\left(x+2\right)}{2x^2\left(x+1\right)+2\left(x+1\right)}+\frac{2x^2+4x-5x-10}{\left(2x^3-2x^2\right)+\left(2x-2\right)}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{2x\left(x+2\right)-5\left(x+2\right)}{2x^2\left(x-1\right)+2\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{\left(2x-5\right)\left(x+2\right)}{\left(2x^2+2\right)\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}+\frac{\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3\left(x-1\right)}{2\left(x^2-1\right)}-\frac{3\left(x+1\right)}{2\left(x^2-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)+\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10}{2\left(x^2-1\right)}+\frac{3x-3}{2\left(x^2-1\right)}-\frac{3x+3}{2\left(x^2-1\right)}\right]\)

\(A=\left[\frac{\left(x+2\right)\left[3x-3+\left(2x-5\right)\left(x+1\right)\right]}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10+3x-3-3x-3}{2\left(x^2-1\right)}\right]\)

\(A=\left[\frac{\left(x+2\right)\left(3x-3+2x^2+2x-5x-5\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\frac{4}{2\left(x^2-1\right)}\)

\(A=\frac{\left(x+2\right)\left(2x^2-8\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\cdot\frac{\left(x^2-1\right)}{2}\)

\(A=\frac{\left(x+2\right)2\left(x^2-4\right)}{2\left(2x^2+2\right)}\)

\(A=\frac{2\left(x+2\right)\left(x-2\right)\left(x+2\right)}{4\left(x^2+1\right)}\)

\(A=\frac{\left(x+2\right)^2\left(x-2\right)}{2\left(x^2+1\right)}\)

:>>> Chả biết đúng không nữa nhưng số to quá :>> 

Khách vãng lai đã xóa
shunnokeshi
Xem chi tiết
Đặng Nguyễn Thảo Nguyên
Xem chi tiết
Thai Phạm
Xem chi tiết
Ahwi
25 tháng 12 2018 lúc 17:38

\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}-\frac{3}{x^2-x+1}\right)\cdot\frac{3x^2-3x+3}{\left(x+1\right).\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left(\frac{x+1}{x}-\frac{3}{\left(x+1\right).\left(x^2-x+1\right)}+\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x^2-x+1\right)}\right)\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{\left(x+1\right)^2.\left(x^2-x+1\right)-3x+3x^2+3x}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{x^4+x^3+x+1+3x^2}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2x^3+2x^2-2x-2}{x.\left(x+1\right)^2.\left(x+2\right)}\)

\(=\frac{3x^4+x^3+7x^2+5x+5}{x.\left(x+1\right)^2.\left(x+2\right)}\)

Bangtan Boys
Xem chi tiết
Tran Le Khanh Linh
27 tháng 2 2020 lúc 12:34

\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\left(x\ne-1;x\ne0;x\ne-2\right)\)

\(=\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right):\frac{3x^3-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\left(\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{\left(x+1\right)\left(x+2\right)}{3\left(x^2-x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x+2\right)^2\left(x+1\right)}{3\left(x^2-x+1\right)^2}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

Khách vãng lai đã xóa
mạc trần
Xem chi tiết
Trần Tuấn Hùng
3 tháng 8 2020 lúc 21:40

zrfdasfdefđsdfrdssưdfdttdfgtfrỷ5ytỷ5ỷt

Khách vãng lai đã xóa
Hoàng Huy
Xem chi tiết
Trần Ái Linh
21 tháng 7 2021 lúc 13:47

1) `2x(3x-1)-(2x+1)(x-3)`

`=6x^2-2x-2x^2+6x-x+3`

`=4x^2+3x+3`

2) `3(x^2-3x)-(4x+2)(x-1)`

`=3x^2-9x-4x^2+4x-2x+2`

`=-x^2-7x+2`

3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`

`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`

`=3x^2-15x-x^2+4x-4-4x^2+9`

`=-2x^2-11x+5`

4) `(2x-3)^2+(2x-1)(x+4)`

`=4x^2-12x+9+2x^2+8x-x-4`

`=6x^2-5x+5`