Bài 5 :
Cho tam giác ABC vuông tại A . Từ một điểm M nằm trong tam giác kẻ MI⊥BC ;MJ⊥CA ; MK⊥AB .
Tìm vị trí điểm M sao cho tổng : MI2 + MJ2 + MK2 nhỏ nhất ?
Cho tam giác ABC vuông tại A. Từ một điểm M trong tam giác ABC kẻ MI vuông góc với BC, MJ vuông góc với AC, MK vuông góc với AB. Tìm M sao cho MI^2+MJ^2+MK^2 nhỏ nhất.
Kẻ đường cao AH của tam giác ABC, ta có:
\(MI^2+MJ^2+MK^2=MI^2+MA^2=\left(MI+MA\right)^2-2MI.MA\ge\frac{\left(MI+MA\right)^2}{2}\)
Lại có: \(MI+MA\ge AI\ge AH\), cho nên: \(MI^2+MJ^2+MK^2\ge\frac{AH^2}{2}\)(không đổi)
Dấu "=" xảy ra <=> M là trung điểm AH.
cho tam giác ABC đều có cạnh=3cm. Gọi M là một điểm nằm tam giác ABC. Từ M kẻ MI,MJ,MK vuông góc với AB,AC,BC. Tính MI+MJ+MK=?
Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.
Kẻ AH vuông góc BC tại H.
Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.
Vậy thì \(BH=HC=1,5cm\)
Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\):
\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)
Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\) (1)
Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)
\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\) (cm2) (2)
Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\)
Cho tam giác ABC vuông tại A. Từ một điểm M thuộc miền trong của tam giác kẻ MI,MK,MH vuông góc với AB,AC,BC. Tìm vị trí M thuộc miền trong tam giác để tổng MI2+MK2+MH2 đạt giá trị nhỏ nhất
Cho tam giác ABC vuông tại A. Từ điểm M nằm trong tam giác kẻ các đường vuông góc với các cạnh BC, AC, AB lần lượt tại I, J, K.Tìm vị trí điểm M để tổng (MI2 + MJ2 + MK2 ) nhỏ nhất
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. điểm i nằm trong tam giác và cách đều 3 cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ I đến BC. Tính BM.
Tam giác ABC vuông tại A => BC2 = AB2 + AC2 ( Theo định lý pitago )
=> BC2 = 32 + 42 = 9 + 16 = 25 = 52
=> BC = 5 (cm)
Tam giác IBC có IB = IC => Góc IBM = Góc ICM (định lý)
Xét tam giác BIM và tam giác CIM có :
IB = IC (gt)
Góc IBM = Góc ICM (cm trên)
Góc BMI = Góc IMC = 900 (gt)
=> tam giác BIM = tam giác CIM (CH - GN)
=> BM = MC (góc tương ứng)\
Mà BM + MC = BC = 5(cm)
=> BM + BM = 5 <=> 2BM = 5 => BM = 2,5 (cm)
Vậy BM = 2,5 (cm)
Áp dụng định lí Pi-ta-go vào tam giác ABC có
AB^2+AC^2=BC^2
9+16=BC^2
25=BC^2
=>BC=5cm
Ta có: IB=IC(gt) => MC=MB(Tính chất đường xiên hình chiếu)
=>MC=MB=BC:2=5:2=2,5
Vậy MB=2,5cm
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. điểm i nằm trong tam giác và cách đều 3 cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ I đến BC. Tính BM.
Cho tam giác ABC vuông tại A. Từ điểm M thuộc miền trong của tam giác kẻ MI,MK,MH vuông góc với AB,AC,BC. Tìm vị trí của điểm M thuộc miền trong của tam giác để MI2+MK2+MH2 đạt giá trị nhỏ nhất.
Giúp em với
B1:Tam giác ABC vuông tại A. điểm M bất kì trong tam giác. Từ M kẻ MI;ME;MK lần lượt vuông góc với BC:AC;AB.Tìm vị trí của M để MI^2+ME^2+MK^2 min
B2:Cho tam giác ABC vuong tạo A.Trên AB,BC,CA lấy K;M;N sao cho tam giác MNK vuông cân tại K. kẻ MH vuông góc với AB=H.
1,CMR tam giác AMK=tam giác AKN
2,Xác định K;M;N để diện tích tam giác K;M;N nhỏ nhất
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Điểm I nằm trong tam giác và cách đều ba cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ điwwmr I đến BC. Tính BM?