chứng minh hai số sau nguyên tố cùng nhau:
5n+9 và 4n+7
câu 3 chứng minh hai số sau nguyên tố cùng nhau
5n+9 và 4n +7(n thuộc N)
Gọi d là ƯCLN( 5n + 9 ; 4n + 7 ) ( d ∈ N )
Ta có : 5n + 9 ⋮ d và 4n + 7 ⋮ d
=> 4( 5n + 9 ) ⋮ d và 5( 4n + 7 ) ⋮ d
=> 20n + 36 ⋮ d và 20n + 35 ⋮ d
=> ( 20n + 36 ) - ( 20n + 35 ) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN(5n + 9;4n + 7 ) = 1 nên 5n + 9 và 4n + 7 là nguyên tố cùng nhau ( đpcm )
Chứng tỏ rằng hai số sau là hai số nguyên tố cùng nhau: 5n+9 và 4n+7
Gọi d là Ước chung lớn nhất của 5n+9 và 4n+7
=> 5n+9 chia hết cho d
4n+7 chia hết cho d
=> 4( 5n + 9 ) - 5( 4n + 7 ) chia hết cho d
=> ( 20n + 36 ) - ( 20n + 35 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 5n+9 và 4n+7 là hai số nguyên tố cùng nhau
Bài 1: Chứng minh rằng với mọi số tự nhiên a thì 4n + 7 và 5n+9 là hai số nguyên tố cùng nhau
chứng minh đây là 2 số nguyên tố cùng nhau; 5n+9 và 4n+7
Gọi d=(5n+9, 4n+7)
=> 5n+9 chia hết cho d => 20n+36 chia hết cho d
VÀ 4n+7 chia hết cho d => 20n+35 chia hết cho d
Trừ đi => 1 chia hết cho d
=> d=1
=? 5n+9 và 4n+7 nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau :
a) 7n + 10 và 5n + 7
b) 2n + 3 và 4n + 8
a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d
=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d
=>35n+50 chia hết cho d; 35n+49 chia hết cho d
=>(35n+50)-(35n+49) chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n
b) Gọi m là ƯCLN(2n+3;4n+8) => 2n+3 chia hết cho m;4n+8 chia hết cho m
=>2(2n+3) chia hết cho m => 4n+6 chia hết cho m
=>(4n+8)-(4n+6) chia hết cho m
=>2 chia hết cho m
=>m thuộc {1;2}
2n+3 là số lẻ => 2n+3 không chia hết cho 2 => m khác 2
=>m=1
=>đpcm
a) 7n + 10 và 5n + 7
Gọi UCLN (7n + 10;5n + 7) = d
7n + 10 = 35n + 50
5n + 7 = 35n + 49
Ta có:UCLN (35n + 50;35n + 49) = d
UCLN (50 ; 49) = d : d = 1
Vậy 7n + 10 và 5n + 7 là số nguyên tố trùng nhau (ĐPCM)
b) 2n + 3 và 4n + 8
Gọi UCLN (2n + 3;4n + 8) là d
2n + 3
4n + 8 = 2n + 4
Ta có: UCLN (2n + 3;2n + 4)
UCLN (3 ; 4) = d : d = 1
Vậy 2n + 3 và 4n + 8 là hai số nguyên tố trùng nhau (ĐPCM)
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau :
a) 7n + 10 và 5n + 7 ;
b) 2n + 3 và 4n + 8.
a) Gọi d > 0 \(\in\) ƯC(7n+10;5n+7)
\(\Rightarrow\) d \(\in\) Ư [5.(7n+10) = 35n +50]
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) - (35n +49) =1
\(\Rightarrow\) d là ước số của 1 \(\Rightarrow\) d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
b) Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
\(\Rightarrow\) d \(\in\) Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
\(\Rightarrow\) d \(\in\) Ư(2) \(\Rightarrow\) d \(\in\) {1,2}
d = 2 không là ước số của số lẻ 2n+3 \(\Rightarrow\) d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
Vây : 2n + 3 va 4n + 8 nguyên tố cùng nhau
chứng minh (4n-5) và (5n-6) là hai số nguyên tố cùng nhau
Gọi \(ƯC\left(4n-5;5n-6\right)=d\)
\(\Rightarrow4n-5⋮d,5n-6⋮d\)
\(\Rightarrow4\left(5n-6\right)-5\left(4n-5\right)⋮d\)
\(\Rightarrow\left(20n-24\right)-\left(20n-25\right)⋮d\)
\(\Rightarrow20n-24-20n+25⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 4n - 5 và 5n - 6 là 2 số nguyên tố cùng nhau.
Chứng minh hai số nguyên tố cùng nhau
4n+3 và 5n+1
Gọi UCLN của hai số đó là d , ta có:
4n + 3 chia hết cho d => 20n + 15 chia hết cho d
5n +1 chia hết cho d => 20n + 4 chia hết cho d
=> 20 n + 15 - 20n + 4 chia hết cho d
Mà 20n + 15 - 20n +4 = 11 là Snt => .................
chứng minh rằng các số sau nguyên tố cùng nhau
7n+10 và 5n+7
2n+3 và 4n+8
2n+2 và 5n+3
Gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
Vậy _________________
Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
=> d là ước số của 2(2n + 3) = 4n + 6
(4n + 8) - (4n + 6) = 2
=> d là ước số của 2 => d=1,2
d = 2 không là ước số của số lẻ 2n+3 => d = 1
Vậy __________________
Câu a : Giả sử : ƯCLN ( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 chia hết cho d => ( 7n + 10 ) . 5 chia hết cho d
=> 5n + 7 chia hết cho d => ( 5n + 7 ) . 7 chia hết cho d
=> 35n + 50 chia hết cho d => ( 35n + 50 ) - ( 35 + 49 ) = 1 chia hét cho d
35 + 49 chia hết cho d => ( 35n + 49 ) - ( 35 + 50 ) = 1 chia hết cho d
Vì 1 chia hết cho d và d thuộc N nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N
=> ƯCLN ( 7n + 13 ; 2n + 14 ) = 1
Vậy : 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
Câu b : Giả sử : ƯCLN ( 2n +3 ; 4n + 8 ) = 1
=> 2n + 3 chia hết cho d => ( 2n + 3 ) chia hết cho d
4n + 8 chia hết cho d => ( 4n + 8 ) . 2 chia hết cho d
=> 2n + 3 chia hết cho d => ( 2n + 4 ) - ( 2n +3 ) = 1 chia hết cho d
=> 2n + 4 chia hết cho d => ( 2 + 3 ) - ( 2n + 4 ) = 1 chia hết cho d
Vì 1 chia hết cho d và d thuộc N nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N
=> ƯCLN ( 2n + 3 ; 4n + 8 ) = 1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau