Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Kiên Nguyễn
Xem chi tiết
Minh Thư Đặng
Xem chi tiết
Vũ Minh Duy
19 tháng 4 2022 lúc 14:44

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)

Đào Lynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:12

a: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có 

MB=MC

\(\widehat{EBM}=\widehat{FCM}\)

Do đó: ΔMEB=ΔMFC

Suy ra:ME=MF và EB=FC

Ta có: AE+EB=AB

AF+FC=AC

mà AB=AC

và EB=FC

nên AE=AF

Ta có: AE=AF

nên A nằm trên đường trung trực của FE(1)

Ta có: ME=MF

nên M nằm trên đường trung trực của FE(2)

từ (1) và (2) suy ra AM là đường trung trực của FE

hay AM\(\perp\)FE

Nguyễn Phương Linh
Xem chi tiết
Dương Thị Hương Sơn
9 tháng 5 2017 lúc 10:21

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

Trần Thùy Dương
3 tháng 5 2018 lúc 15:44

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !

Hiền Nguyễn Thị
8 tháng 5 2018 lúc 9:09

Câu b của bạn Dương Thị Hương Sơn dài. Mình làm cách khác ngắn hơn:

\(\Delta BEM=\Delta CFM\)

=> EB=FC, EM=FM

Ta có: AB-EB= AC - FC hay AE=AF

=> A nằm trên đường trung trực của EF (1)

Ta lại có: EM=FM

=> M nằm trên đường trung trực của EF (2)

Từ (1) và (2) suy ra: đpcm

^-^ Chúc các bạn học tốt. k ủng hộ cho mk nhé cảm ơn các bạn.

phuong
Xem chi tiết
Nguyễn Mai Hân
Xem chi tiết
Nguyễn Ngọc Anh Minh
23 tháng 8 2023 lúc 15:31

A B C M I G

Xét tg AGB và tg AGC có

AB=AC

AG chung

\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)

=> tg AGB = tg AGC (c.g.c)

b/

\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)

\(\Rightarrow AM\perp BC\)

\(CI\perp BC\)

=> GM//CI mà MB=MC => GB=GI (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Xét tg BCI có

MB=MC; GB=GI (cmt) => GM là đường trung bình của tg BCI

\(\Rightarrow GM=\dfrac{1}{2}CI\Rightarrow CI=2GM\)

 

 

 

Tin dễ mà =))
23 tháng 8 2023 lúc 15:49

(Tự vẽ hình)

a)

Xét ΔABC cân tại A có AM là đường trung tuyến

=> AM đồng thời là đường phân giác, đường cao của ΔABC

=> \(\left\{{}\begin{matrix}\widehat{BAG}=\widehat{CAG}\\GM\perp BC\end{matrix}\right.\)

Vì ΔABC cân tại A

=> AB = AC (Định nghĩa tam giác cân)

Xét ΔABG và ΔACG có:

AB = AC(cmt)

\(\widehat{BAG}=\widehat{CAG}\)(cmt)

AG chung

=> ΔABG = ΔACG(cgc)(đpcm)

b)

Có \(\left\{{}\begin{matrix}GM\perp BC\left(cmt\right)\\IC\perp BC\left(gt\right)\end{matrix}\right.\)

=> GM // IC

Xét ΔBIG có M là trung điểm BC

Mà GM//IC

=> GM là đường trung bình của ΔBIC

=>\(\left\{{}\begin{matrix}MG//IC\\IC=2.GM\left(dpcm\right)\end{matrix}\right.\)

c)

Có AG//IC(cmt)

=> \(\widehat{GAC}=\widehat{ICA}\)(2 góc so le trong)

Vì AM,BN là 2 đường trung tuyến của ΔABC

Mà AM cắt BN tại G

Nên G là trọng tâm ΔABC

=>AG = \(\dfrac{2}{3}\)AM

=>AG = 2.GM

Mà IC = 2.GM(cm câu b)

=> AG = IC

Xét ΔGAC và ΔICA có:

AG = IC(cmt)

\(\widehat{GAC}=\widehat{ICA}\)(cmt)

AN = NC(BN là đường trung tuyến)

=> ΔGAC = ΔICA(gcg)

=> AI = GC(2 cạnh tương ứng)

Mà ΔABG = ΔACG(cm câu a) => BG = CG

=> AI = BG(1)

Có \(\widehat{AGB}=\widehat{GBM}+\widehat{GMB}\)(góc ngoài tam giác)

=> \(\widehat{AGB}=\widehat{GBM}+90^0\)

=> \(\widehat{AGB}>90^0\)

=> Cạnh AB lớn nhất trong ΔABG

=> AB>BG(2)

Từ (1) và (2) => AB > AI

=> \(\widehat{AIB}>\widehat{ABI}\)

Minh Thư Đặng
Xem chi tiết
Phạm Thanh Hà
19 tháng 4 2022 lúc 13:12

a)Xét ΔBCM và ΔCBN có:
               BC chung
           góc NBC=góc MCB(ΔABC cân)
               BN=MC (gt)
 ⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)

Minh Thư Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 23:35

a: Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

b: ΔNBC=ΔMCB

=>góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

mà AB=AC

nên AO là trung trực của BC

 

nguyenphuonganh
Xem chi tiết