Cho tam giác ABC cân tại A có trung tuyến kẻ từ B và C vuông góc với nhau .TÍNH CosA
Cho tam giác ABC có trung tuyến kẻ từ B và C vuông góc với nhau.tính cosA
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AC tại E, kẻ MF vuông góc với AC tại F.
a, C/m AM vuông góc với EF.
b, Từ B kẻ đg thg vuông góc với AB tại B, từ C kẻ đường vuông góc với AC tại C, 2 đg thg này cắt nhau tại D. C/m A,M,D thẳng hàng.
a: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có
MB=MC
\(\widehat{EBM}=\widehat{FCM}\)
Do đó: ΔMEB=ΔMFC
Suy ra:ME=MF và EB=FC
Ta có: AE+EB=AB
AF+FC=AC
mà AB=AC
và EB=FC
nên AE=AF
Ta có: AE=AF
nên A nằm trên đường trung trực của FE(1)
Ta có: ME=MF
nên M nằm trên đường trung trực của FE(2)
từ (1) và (2) suy ra AM là đường trung trực của FE
hay AM\(\perp\)FE
Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a, Chứng minh: Tam giác BEM=Tam giác CFM.
b, Chứng minh AM là trung trực của EF.
c, Từ B kẻ đường vuông góc với AB tại B, từ C kẻ đường vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A,D,M thẳng hàng
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
Câu b của bạn Dương Thị Hương Sơn dài. Mình làm cách khác ngắn hơn:
\(\Delta BEM=\Delta CFM\)
=> EB=FC, EM=FM
Ta có: AB-EB= AC - FC hay AE=AF
=> A nằm trên đường trung trực của EF (1)
Ta lại có: EM=FM
=> M nằm trên đường trung trực của EF (2)
Từ (1) và (2) suy ra: đpcm
^-^ Chúc các bạn học tốt. k ủng hộ cho mk nhé cảm ơn các bạn.
cho tam giác ABC cân tại A. Vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E. Kẻ MF vuông góc với AC tại F.
a, Chứng minh tam giác BEM=tam giác CFM
b,AM là trung trực của EF
c,Từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D. Chứng minh A,M,D thẳng hàng.
Cho tam giác ABC cân tại A trung tuyến AM và trung tuyến BN cắt nhau tại G qua C kẻ đường thẳng vuông góc với BC và cắt BN tại I
a. Chứng minh tam giác AGB=AGC
b. C/m rằng CI=2GM
C. So sánh góc AIB và góc ABI
Xét tg AGB và tg AGC có
AB=AC
AG chung
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
=> tg AGB = tg AGC (c.g.c)
b/
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
\(\Rightarrow AM\perp BC\)
\(CI\perp BC\)
=> GM//CI mà MB=MC => GB=GI (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Xét tg BCI có
MB=MC; GB=GI (cmt) => GM là đường trung bình của tg BCI
\(\Rightarrow GM=\dfrac{1}{2}CI\Rightarrow CI=2GM\)
(Tự vẽ hình)
a)
Xét ΔABC cân tại A có AM là đường trung tuyến
=> AM đồng thời là đường phân giác, đường cao của ΔABC
=> \(\left\{{}\begin{matrix}\widehat{BAG}=\widehat{CAG}\\GM\perp BC\end{matrix}\right.\)
Vì ΔABC cân tại A
=> AB = AC (Định nghĩa tam giác cân)
Xét ΔABG và ΔACG có:
AB = AC(cmt)
\(\widehat{BAG}=\widehat{CAG}\)(cmt)
AG chung
=> ΔABG = ΔACG(cgc)(đpcm)
b)
Có \(\left\{{}\begin{matrix}GM\perp BC\left(cmt\right)\\IC\perp BC\left(gt\right)\end{matrix}\right.\)
=> GM // IC
Xét ΔBIG có M là trung điểm BC
Mà GM//IC
=> GM là đường trung bình của ΔBIC
=>\(\left\{{}\begin{matrix}MG//IC\\IC=2.GM\left(dpcm\right)\end{matrix}\right.\)
c)
Có AG//IC(cmt)
=> \(\widehat{GAC}=\widehat{ICA}\)(2 góc so le trong)
Vì AM,BN là 2 đường trung tuyến của ΔABC
Mà AM cắt BN tại G
Nên G là trọng tâm ΔABC
=>AG = \(\dfrac{2}{3}\)AM
=>AG = 2.GM
Mà IC = 2.GM(cm câu b)
=> AG = IC
Xét ΔGAC và ΔICA có:
AG = IC(cmt)
\(\widehat{GAC}=\widehat{ICA}\)(cmt)
AN = NC(BN là đường trung tuyến)
=> ΔGAC = ΔICA(gcg)
=> AI = GC(2 cạnh tương ứng)
Mà ΔABG = ΔACG(cm câu a) => BG = CG
=> AI = BG(1)
Có \(\widehat{AGB}=\widehat{GBM}+\widehat{GMB}\)(góc ngoài tam giác)
=> \(\widehat{AGB}=\widehat{GBM}+90^0\)
=> \(\widehat{AGB}>90^0\)
=> Cạnh AB lớn nhất trong ΔABG
=> AB>BG(2)
Từ (1) và (2) => AB > AI
=> \(\widehat{AIB}>\widehat{ABI}\)
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a)Xét ΔBCM và ΔCBN có:
BC chung
góc NBC=góc MCB(ΔABC cân)
BN=MC (gt)
⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
b: ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
cho tam giác ABC cân tại A , vẽ trung tuyến AM từ M kẻ ME vuông góc với AB tại E. Kẻ ME vuông góc AC tại F
a) chứng minh tam giác BEM= tam giác CFM
b) chứng minh Am là trung trực của EF
c) từ B kẻ đường vuông góc với AB tại B , từ C kẻ đường vuông góc với AC tại C , 2 đường thẳng này cắt nhau tại D . Chứng minh rằng 3 điểm A, M , D thẳng hàng