tìm các số nguyên a sao cho :
( a^2 - 1) (a^2 - 4) (a^2 - 7) (a^2 - 10) < 0
Tìm các số nguyên a sao cho:
(a^2-1)(a^2-4)(a^2-7)(a^2-10) < 0
Tìm các số nguyên a sao cho
(a2-1).(a2-4).(a2-7).(a2-10)<0
Tìm các số nguyên a sao cho:
(a^2-1)(a^2-4)(a^2-7)(a^2-10) < 0
Giải gấp mình cho đúng
tìm các số nguyên a sao cho
(a2-1)(a2-4)(a2-7)(a2-10)<0
Tìm các số nguyên a sao cho: (a2 - 1)(a2 - 4)(a2 - 7)(a2 - 10) < 0
(a2 - 1)(a2 - 4)(a2 - 7)(a2 - 10) < 0
=> (a\(^2\)- 1 ) = 0 => a\(^2\)=1 => a = +-1
=> (a\(^2\)- 4 ) = 0 => a\(^2\)= 4 => a = +-2
=> (a\(^2\)- 7 ) = 0 => a\(^2\)= 7 => a = rỗng ( vì a nguyên )
=> (a\(^2\)- 10 ) = 0 => a\(^2\)= 10 => a = rỗng ( vì a nguyên )
Vậy, ..............
Cô hướng dẫn em lập bảng xét dấu:
Từ bảng xét dấu trên ta có :
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
\(\Leftrightarrow-\sqrt{10}< a< -\sqrt{7}\) hoặc -2 < a < -1 hoặc 1 < a < 2 hoặc \(\Leftrightarrow\sqrt{7}< a< \sqrt{10}\)
Do a nguyên nên \(\orbr{\begin{cases}a=-3\\a=3\end{cases}}\)
Tìm các số nguyên a sao cho:
(a^2-1)(a^2-4)(a^2-7)(a^2-10) < 0
Giải gấp mình cho đúng
tìm các số nguyên a sao cho
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
TH1:Tích có chứa 1 thừa số nguyên âm:
Ta có:\(^{a^2-1>a^2-4>a^2-7>a^2-10}\)
\(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>7\\a^2< 10\end{cases}}\)
\(\Rightarrow a^2=9\Rightarrow a=3\)
TH2: Tích có chứa 3 thừa số nguyên âm:
Ta có: \(a^2-1>a^2-4>a^2-7>a^2-10\)
\(\Rightarrow\hept{\begin{cases}a^2-1>0\\a^2-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>1\\a^2< 4\end{cases}}\)
\(\Rightarrow\)Không có giá trị nào của a trong TH2
Vậy a=3
TÌM CÁC SỐ NGUYÊN a , SAO CHO
( A^2 - 1) ( A^2 - 4) (A^2 - 7 ) (A^2 - 10) < 0
+)với x^2<=1
=>(x^2-1)<=0,(x^2-4)<=0
(x^2-7)<=0,(x^2-10<=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
+)với x^2>=10
=>(x^2-1)>=0,x^2-4>=0
x^2-7>=0,x^2-10>=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
Vậy 1<x^2<10
vì x nguyên nên chỉ có 4 trường hợp:
x=2,x=3,x=-2,x=-3
Thử vào thì ra x=3 hoặc x=-3.
Vì tích 4 số âm nên:
a2-1; a2-4; a2-7;a2-10 phải có ít nhất 1 số âm hoặc 3 số âm, Ta có:
a2-10 < a2-7 < a2-4 < a2-1
+) TH1: Có 1 số âm a2-10 < a2-7 => a2-10 < 0 < x2-7
7<a2<10
=>a2=9 => a=-3;3
+) TH2: 3 số âm, 1 số dương:
a2-4 < 0 < a2-1 => 1< a2 < 4 (a thuộc Z) => a thuộc rỗng
Vậy a=-3;3
Tìm các số nguyên a, sao cho : \(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
Mọi người giúp cái
Tích bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.
Ta có : a2 - 10 < a2 - 7 < a2 - 7 < a2 - 4 < a2 - 1.
Xét 2 trường hợp :
TH1 : có 1 số âm, 3 số dương
a2 - 10 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 ( do a \(\in\)Z ) \(\Rightarrow\)a = -3 hoặc a = 3
TH2 : có 3 số âm, 1 số dương
a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 . Do a \(\in\)Z nên không có số nguyên a nào thỏa mãn
Vậy \(a=\orbr{\begin{cases}3\\-3\end{cases}}\)