Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shunnokeshi
Xem chi tiết
Anh Lê Đức
Xem chi tiết
thần giao cách cảm
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

Dam Duyen Le
Xem chi tiết
Đồng Thiên Ái
Xem chi tiết
Nguyễn Minh Vũ
Xem chi tiết
Nguyễn Bảo Long
3 tháng 1 2018 lúc 15:53

Ek bạn , bạn có chơi nr ko

Nguyễn Minh Vũ
3 tháng 1 2018 lúc 15:51

kb nha minh t i c k nha

Bui Huu Manh
3 tháng 1 2018 lúc 17:05

Trả lời kiểu gì zậy

aaaaaaaa
Xem chi tiết

Bài 1:

ƯCLN(a;b)=15

=>a⋮15; b⋮15

\(a\cdot b=ƯCLN\left(a;b\right)\cdot BCN\mathbb{N}\left(a;b\right)\)

=>\(a\cdot b=15\cdot3000=45000\)

mà a⋮15; b⋮15

nên (a;b)∈{(15;3000);(3000;15);(30;1500);(1500;30);(60;750);(750;60);(75;600);(600;75);(120;375);(375;120);(150;300);(300;150)}

mà ƯCLN(a;b)=15

nên (a;b)∈{(15;3000);(3000;15);(120;375);(375;120)}

Bài 2:

Sửa đề: Tìm số nguyên tố P

a: TH1: P=2

\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số

=>Nhận

TH2: p=3

\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố

=>Loại

TH3: p=3k+1

\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)

\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)

\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3

=>\(2p^2+1\) là hợp số

TH4: p=3k+2

\(2p^2+1=2\left(3k+2\right)^2+1\)

\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)

\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3

=>\(2p^2+1\) là hợp số

Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3

b: TH1: p=3

p+4=3+4=7; p+8=3+8=11

=>Nhận

TH2: p=3k+1

\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3

=>p+8 là hợp số

=>Loại

TH3: p=3k+2

\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3

=>p+4 là hợp số

=>Loại

le ngoc khanh thy
Xem chi tiết
nguyen duy
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết