Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thị Thu Mai
Xem chi tiết
Linh Kẹo
10 tháng 8 2016 lúc 21:17

Bài này dễ nè :

* xét p và q thuộc dạng : 3k ; 3k + 1 ; 3k+2

rồi thay vào nha

Nhật Nguyệt Lệ Dương
10 tháng 8 2016 lúc 21:19

p = 2; q = 3

Cái này thì mình phải thử, p và q chỉ trong phạm vi 10 thôi.

Trương Cao Quốc Anh
20 tháng 7 2017 lúc 7:31

dễ thấy pq⋮2pq⋮2

nếu p=2 thì 14+q,2q+1114+q,2q+11 là số nguyên tố
nếu q chia 3 dư 1 thì 14+q chia hết cho 3

nếu q chia 3 dư 2 thì 2q+11 chia hết cho 3

từ đó suy ra q=3

nếu q=2 thì 7p+2 và 2p+11 là số nghuyên tố

tương tự trên ta có p=3

nhớ tk mk nhá

Đào Thị Mai
Xem chi tiết
Free Fire
Xem chi tiết

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

Khách vãng lai đã xóa
bui van minh
Xem chi tiết
Nguyễn Thành Đạt
6 tháng 3 lúc 16:27

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

họ thái
11 tháng 9 lúc 22:44

7p + q và pq + 11 đều là số nguyên tố

pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

 

** Nếu p = 2 --> 7p + q = 14 + q

ta thấy 14 chia 3 dư 2 ;

+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3

--> 7p + q = 17 --> là số nguyên tố

--> pq + 11 = 17 --> là số nguyên tố --> thỏa

 

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

 

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

 

** Nếu q = 2 --> 7p + q = 2 + 7p

2 chia 3 dư 2 ;

 

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3

--> 7p + q = 23

--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

 

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

Ko chắc lắm

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1

--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

 

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

Ngọc Minh Vũ
25 tháng 9 lúc 21:57

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

Vũ Nguyên Hạnh
Xem chi tiết
Đỗ Lê Tú Linh
7 tháng 7 2015 lúc 10:31

p=1;q=0

p=0;q=2

p=2;q=3

...

 

Hoàng Quý Thành Danh
25 tháng 2 2016 lúc 9:35

bạn "tôi học giỏi toán" sai rồi 0 và 1 đâu phải là số nguyên tố

trịnh đình tứ
7 tháng 2 2020 lúc 9:31

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

Khách vãng lai đã xóa
Lê Thảo Nguyên
Xem chi tiết
Nguyễn Linh Chi
9 tháng 4 2019 lúc 22:55

Để  pq+17 >2 là số nguyên tố thì pq là số chẵn 

=> p chia hết 2 hoặc q chia hết 2

Vì p, q là số nguyên tố nên có 2 trường hợp xảy ra:

TH1: p=2 

=> 7.p+q=7.2+q=14+q 

q là số nguyên tố 

+) q=3 

Ta có: 7x2+3=17 là số nguyên tố

2x3+17=23 là số nguyên tố

=> q=3 thỏa mãn

+) q chia 3 dư 1 => q=3k+1 (k thuộc N)

7p+q=14+3k+1=15+3k chia hết cho 3 không phải là số nguyên tố

nên trường hợp này loại

+) q chia 3 dư 2 => q=3k+2 ( k thuộc N)

pq+17=(3k+2).2+17=6k+21 chia hết cho 3 không phải là số nguyên tố

nên trường hợp này cũng bị loại

Vậy p=2, q=3 là thỏa mãn

TH2: q=2

Ta có: 7p+q=7p+2

    pq+17=2p+17

Vì: p là số nguyên tố  ta có các trường hợp nhỏ sau:

+) Với  p=3

=> 7p+2=23 là số nguyên tố

2p+17=23 là số nguyên tố

=> p =3 thỏa mãn

+) Với p chia 3 dư 1 => p=3k+1 ( k thuộc N)

7p+2=7(3k+1)+2=21k+9 chia hết cho 3 nên không phải là số nguyên tố nên  loại 

+Với p chia 3 dư 2 => p=3k+2 

2p+17=2(3k+2)+17=6k+21 chia hết cho 3 nên không phải là số nguyên tố nên loại

Vậy q=2, p=3 là thỏa mãn

Kết luận cả 2 TH: p=2, q=3 hoawch q=2, p=3

Linh Linh
10 tháng 4 2019 lúc 14:16

7p + q và pq + 11 đều là số nguyên tố 
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2 

** Nếu p = 2 --> 7p + q = 14 + q 
ta thấy 14 chia 3 dư 2 ; 
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3 
--> 7p + q = 17 --> là số nguyên tố 
--> pq + 11 = 17 --> là số nguyên tố --> thỏa 

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại 

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại 

** Nếu q = 2 --> 7p + q = 2 + 7p 
2 chia 3 dư 2 ; 

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3 
--> 7p + q = 23 
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa 

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại 

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1 
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại 

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

Trần Quỳnh Chi
10 tháng 4 2019 lúc 20:11

có phải bạn học đội tuyển toán 6 đúng không

Lê Yến Linh
Xem chi tiết
Xem chi tiết
TuanMinhAms
29 tháng 11 2018 lúc 21:23

xet p,q tung so = 2 hoac > 2 va co dang 2k+1

Nguyễn Đăng Anh
Xem chi tiết
songoku  đại đế
15 tháng 12 2018 lúc 17:49

Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
  7p+q=7.2+q=14+q7p+q=7.2+q=14+q
               -Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
               -Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
                                              7p+q=7.2+3=17   7p+q=7.2+3=17 (thỏa mãn)
               -Nếu q=3k+1  (k∈N)q=3k+1  (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
              - Nếu q=3k+2  (k∈N)q=3k+2  (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
\Rightarrow p=2; q=3Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
  7p+q=7.2+q=14+q7p+q=7.2+q=14+q
               -Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
               -Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
                                              7p+q=7.2+3=17   7p+q=7.2+3=17 (thỏa mãn)
               -Nếu q=3k+1  (k∈N)q=3k+1  (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
              - Nếu q=3k+2  (k∈N)q=3k+2  (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
suy ra p=2; q=3

trịnh đình tứ
7 tháng 2 2020 lúc 9:27

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

Khách vãng lai đã xóa