Tìm x thuộc Z biết
\(\frac{x+2}{3}\)=\(\frac{2-x}{4}\)
Tìm x,y,z,t thuộc Z biết: \(\frac{27}{4}=\frac{-x}{3}=\frac{3}{y^2}=\frac{\left(z+3\right)^2}{-4}=\left|t-2\right|\)
t thuộc N
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\left(\frac{x^2-2x}{x^3-x^2+x}\right)\))
a) Rút gọn
b) Tính giá trị A biết\(|x-\frac{3}{4}|=\frac{5}{4}\)
c) Tìm x thuộc Z để A thuộc Z
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
1. Tìm x,y thuộc Z biết:
a,\(\frac{x}{7}=\frac{9}{y}\)và x > y
b,\(\frac{-2}{x}=\frac{y}{5}\)và x<0<,y.
2.Tìm x,y thuộc Z biết:
\(\frac{x-4}{y-5}=\frac{4}{3}\)và x - y =5
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
câu c mk nhầm đề sr bạn nha
\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)
1) Tìm x, biết;
a) / x - 3 / + / x - 4 / = 2x
b) / x( x - 4 ) = x
2) Cho
\(\frac{x}{y}=\frac{z}{t}\)
Chứng minh rằng
\(\frac{x.z}{y.t}=\frac{x^2+z^2}{y^2+t^2}\)
3) Biết
\(\frac{ay-bx}{c}=\frac{bz-cy}{a}=\frac{cx-az}{b}\)
Chứng minh x : y : z = a : b : c
4) Tìm x thuộc Z, B thuộc Z
B=\(\frac{5}{\sqrt{x-1}}\)
Tìm x , biết :
\(\frac{x-3}{6}=\frac{2}{x-4}\)( với x thuộc Z )
Ta có: \(\frac{x-3}{6}=\frac{2}{x-4}\Leftrightarrow\left(x-3\right)\left(x-4\right)=6.2=12\)( 1 )
Do \(x\in Z\Rightarrow\hept{\begin{cases}x-3\in Z\\x-4\in Z\end{cases}}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(x-3\right).\left(x-4\right)=3.4\Leftrightarrow x-3=4\Leftrightarrow x=7.\)
Một cách khác.
x - 3/6 = 2/x - 4
<=> (x - 3).(x - 4) = 2.6
<=> x^2 - 7x + 12 = 12
<=> x^2 - 7x = 12 - 12
<=> x^2 - 7x = 0
<=> x(x - 7) = 0
<=> x = 0 hoặc x - 7 = 0
x = 0 + 7
x = 7
=> x = 0 hoặc 7
cho biểu thức: A=\(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\)( x >= 0; x khác 4)
a, Rút gọn A
b, Tìm A biết x = 4 - \(2\sqrt{3}\)
c, Tìm x thuộc Z để A thuộc Z
\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow x=\sqrt{3}-1\)
\(\Rightarrow A=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}\)
\(b,A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}\)\(=1-\frac{4}{\sqrt{x}+2}\)
\(A\in Z\Leftrightarrow1-\frac{4}{\sqrt{x}+2}\in Z\Rightarrow\frac{4}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_4\)
Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)Nhưng \(\sqrt{x}+2\ge2\)\(\Rightarrow\sqrt{x}+2\in\left\{2;4\right\}\)
\(Th1:\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(Th2:\sqrt{x}+2=4\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(KL:x\in\left\{0;4\right\}\)
Tìm x thuộc Z, biết:
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{4}{3}.\frac{-1}{3}=\frac{-4}{9}\)
k nha
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{6}-\frac{3}{6}\right)\)
\(=\frac{4}{3}.\frac{-2}{6}\)
\(=\frac{4}{3}.\frac{-1}{3}\)
\(=\frac{-4}{9}\)
Cho A=\(\left(\frac{3x}{x-2}-\frac{2x^2-5}{x^2-4}-\frac{x-1}{x+2}\right):\frac{3}{x+2}\)
a. Rút gọn A
b. Tính A biết \(x^2-2x=0\)
c. Tìm x thuộc Z để A thuộc Z
Cho A=\(\left(\frac{3x}{x-2}-\frac{2x^2-5}{x^2-4}-\frac{x-1}{x+2}\right):\frac{3}{x+2}\)
a. Rút gọn A
b. Tính A biết \(x^2-2x=0\)
c. Tìm x thuộc Z để A thuộc Z