Cho tứ giác ABCD, ad=3cm,bd=5cm,ab=4cm và góc abd=góc adc vậy tứ giác trên là hình gì
Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại I và góc ABD= góc ACD
a, Chứng minh tam giác AIB đồng dạng với tam giác DIC
b,AI.BC=AD.BI
c, Từ D kẻ tia phân giác DM của tam giác ADC. Tính DM biết AC=5cm, AD=3cm và góc ADC=90 độ
Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại I và góc ABD= góc ACD
a, Chứng minh tam giác AIB đồng dạng với tam giác DIC
b,AI.BC=AD.BI
c, Từ D kẻ tia phân giác DM của tam giác ADC. Tính DM biết AC=5cm, AD=3cm và góc ADC=90 độ
Cho tứ giác ABCD có AB = 3cm, BC = 10cm, CD = 12cm, AD = 5cm và BD =6cm. Chứng minh:a) Tam giác ABD đồng dạng với tam giác BDC.b) ABCD là hình thang.
Cho tứ giác ABCD có AB=3cm. BC=10cm, CD=12cm. AD = 5cm và BD=6cm. Chứng minh:
a) Tam giác ABD đồng dạng với tam giác BDC.
b) ABCD là hình thang.
a: Xét ΔABD và ΔBDC có
\(\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}\left(\dfrac{3}{6}=\dfrac{6}{12}=\dfrac{5}{10}\right)\)
Do đó: ΔABD~ΔBDC
b: Ta có: ΔABD~ΔBDC
=>\(\widehat{ABD}=\widehat{BDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
=>ABCD là hình thang
Cho tam giác ABC vuông tại A, AD là phân giác \(\widehat{BAC}\) ( D ∈ BC ). Gọi N là hình chiếu vuông góc của D trên AC và M là hình chiếu vuông góc của D trên AB.
1> Tứ giác AMDN là hình gì? Tại sao?
2> Cho AB = 3cm ; AC = 4cm . Tính BD, DC và diện tích tứ giác AMDN
3> MC cắt AD tại I và cắt DN tại K. Chứng minh rằng \(\dfrac{1}{MI}=\dfrac{1}{MK}+\dfrac{1}{MC}\)
1: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
AD là phan giác
=>AMDN là hình vuông
2: BC=căn 3^2+4^2=5cm
AD là phân giác
=>DB/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
Cho 1 hình tứ giác abcd , ab = 3cm , bc = 3cm , bd = 5cm , ad = 4cm . Tính diện tích hình abcd .
Cho tứ giác ABCDcos AB = 3cm, BC = 10cm, CD = 12cm, AD = 5cm và đường chéo BD = 6cm.
a) Chứng minh tam giác ABD đồng dạng với tam giác BDC
b) Chứng minh tứ giác ABCD là hình thang
c) Hai đường chéo AC và BD cắt nhau tại O. Tính DO
Cho tứ giác ABCD có AB = 3cm ; BC = 10cm ; CD = 12cm ; AD = 5cm, đường chéo BD = 6cm. Chứng minh rằng
a) Tam giác ABD đồng dạng với tam giác BCD
b) ABCD là hình thang
a: Xét ΔABD và ΔBDC có
AB/BD=BD/CD=AD/BC
=>ΔABD đồng dạng với ΔBDC
b: ΔABD đồng dạng với ΔBDC
=>góc ABD=góc BDC
=>AB//CD
cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD. Kẻ CH vuông góc với AD, CK vuông góc với AB
, Tính diện tích am giác CKH ,tứ giác AKCH nếu góc BAD=60, AB=4cm,AD=5cm